THE DUODECIMAL SOCIETY OF AMERICA

is a voluntary nonprofit organization for the conduct of research and education of the public in the use of Base Twelve in numeration, mathematics, weights and measures, and other branches of pure and applied science.

Full membership with voting privileges requires the passing of elementary tests in the performance of twelve-base arithmetic. The lessons and examinations are free to those whose entrance applications are accepted. Remittance of $5, covering initiation fee ($3) and one year’s dues ($3), must accompany applications.

The Duodecimal Bulletin is the official publication of the Duodecimal Society of America, Inc., 20 Carlton Place, Staten Island 4, New York. F. Emerson Andrews, Chairman of the Board of Directors. H. C. Robert Jr., President. George S. Terry, Editor. Copyrighted 1952 by the Duodecimal Society of America, Inc. Permission for reproduction is granted upon application. Separate subscriptions $2.00 a year, 5¢ a copy.

The Duodecimal Bulletin

All figures in italics are duodecimal.

DUODECIMAL BIBLIOGRAPHY

by Lewis Carl Seelbach and Ralph H. Beard

This bibliography is in the form of an alphabetical list of the names of authors of works on duodecimals, and of works that contain some reference to them. It is a summation of the information that we have been able to assemble. But, while it is fairly comprehensive, it cannot claim to be exhaustive. Research on the bibliography will continue, and additions to the list are earnestly solicited, as well as any corrections. Material published in the Duodecimal Bulletin up to the end of Vol. 7, is included.

Following the alphabetical list is a brief chronology of the works prior to the year 1800, and a list of the available mathematical tables of duodecimals, arranged according to subject.

We wish to express our indebtedness to Paul North Rice, Chief of the Reference Department of the New York Public Library, and to Dr. Raymond Clare Archibald, of Brown University, for their many valuable additions to the list.

ALPHABETICAL LIST

Adams, John Quincy
Report to the Senate and the House of Representatives on Weights and Measures, 1821.
Subtitle: Report of the Secretary of State upon weights and measures, prepared in obedience to a Resolution of the House of Representatives of the Fourteenth of December, 1819. Read and ordered to lie on the table, 22, February, 1821. Published by Gales and Seaton, Washington, D. C., 1821.

Adams, Paul and Camilla
"Several Short Cuts,"
in Duod. Bul., v. 6, n. 1, Feb. 1950, p. 19
The duodecimal forms of some of the more common arithmetical short cuts.

Ahrens, W.
Mathematische Unterhaltungen und Spiele. Leipzig, 1901.
Chapter 3, Numeration system. On page 25, it is stated that Simon Stevin proposed replacing the decimal system with the duodecimal, in his l'Arithmetique, Leiden, 1585,
Ahrens, W. (continued)
p. 6. This edition is not available. Offentliche Wissenschaftliche Bibliothek, Berlin, gives this title as "Mathematische Unterricht," in place of "Mathematische Unterrichtung."

Amberg, B.

Ames, F. H., Jr.
"The Man with Twelve Fingers."
Paper on elementary duodecimal arithmetic.

Anderson, Duncan
"Arithmetic."
Description of duodecimal notation.

"About Decimal Form Fractions."
in Duod. Bul., v. 1, n. 3, Oct. 1945, p. 9
Fractionals expressed on various number bases.

"An Adventure in Counting."
in Mechanix Illustrated, Sept. 1943.
Popular presentation of the duodecimal system.

"Decimal-Form Fractions to Various Bases."
Fractionals on bases two to twelve.

"Duodecimal System."
An excellent statement of the duodecimal system and its advantages.

"An Excursion in Numbers."
Popular presentation of the duodecimal system, in comprehensive form.
Bakst, Aaron
Exposition of the use of various number bases, including
the duodecimal, p. 23-29.

Baldwin and Craddock
Scales of Notation, by Augustus de Morgan, v. 1a,
sec. 73, p. 7.
Includes the duodecimal.

Barlow, Peter
An Elementary Investigation of the Theory of Numbers. Royal
Military Academy, Woolwich, 1811.
Prepares the duodecimal arithmetic and notation as his
original idea.
A New Mathematical and Philosophical Dictionary. Royal
Military Academy, Woolwich, 1814.
Includes material on duodecimals.

"On the Method of Transforming a Number from One Scale of
Notation to Another, and Its Application to the Rule of
Duodecimals."
in Nicholson's Philosophical Journal, 1810, v. 25,
p. 181-188.

Bassot, Leon
Historical Sketch of the Foundation of the Metric System.
Paris, 1901.
Quotes Laplace's statement on the consideration of both
the duodecimal and decimal notation, before selection of
the decimal.

Beard, Ralph H. (Ann. Award, Duod. Soc., 1947.)
"Arithmetical by Twelves;"
letter to the editor, N. Y. Herald Tribune, 9 Apr. 1944.

"Dates;"
Reviews the various forms in which dates are stated, and
presents a recommended duodecimal practice.

"Defects of the Metric System;"
letter to the editor, N. Y. Herald Tribune, 12 Mar. 1944.

Beard, Ralph H. (Continued)
"Disingenuous Dissuasions;",
Critical comment on the attitude of prominent mathematicians,
past and present, towards the duodecimal system.

"Do-Metric System;"
A comprehensive system of co-ordinated weights and
measures, based on the yard, the pint and the pound, to
accord with the duodecimal notation and arithmetic.

"Duodecimal Metrics;"

"The Dozen System of Mathematics;"
in Office Appliances, Chicago, June 1946.

"Duodecimal Society Advocates 12 as the Base of Our Number
System;"
in Staten Island Advance, 28 Apr. 1945.

"Fine Measurement by Monochromatic Light;"
Discussion of the do-metric linear standard, in relation
to the Weggers measurement of the standard meter in wave-
lengths of the Mercury 198 Green.

"Fractionals and the Unit Point;"
Recommends the use of these terms as more proper for
general application than "decimals" and "decimal-point;"

"Periods of Primes;"
Essay on the length of the periods of reciprocals of
prime duodecimal numbers.

"Reversible Numbers;"
Discussion of numbers whose reversals are multiples of
the original. Applied to several bases.
"Unscientific Science,"
Critical comment on article by Oystein Ore, Our Everyday
Reckonings, in Scientific Monthly, Nov. 1945.

"Why Change,"
in Duod. Bul., each issue from v. 4, n. 3, to v. 7, n. 1.
Editorial item, de-emphasizing the problem of transition
from decimal to duodecimal numeration.

Beard, Col. Robt. S.
"Kin of the Golden Mean,"
Essay on the fundamental relationship between the golden
mean, dynamic symmetry, the Fibonacci series, the
 pentagon, and the pentacle, - considered decimally and
duodecimally.

Bell, Eric Temple
In material on Lagrange, makes sarcastic reference to
duodecimal system.

Berckenkamp, Ioannem Albertum
Leges Numerandi Universalis quibus Numeratio Decadie Leibnizi
Dyadica nec non Feliqua Numerationis Genera Partim Pleura,
Partim Pauciura Numerorum Signa Continentia Aptantur.
Lengoviae, 1747.
Demonstration of bases 2 - 13, 15, 24, and 30.

Bezout, Etienne
Cours de mathematique a l'usage des gardes du pavillon et de
Covers duodecimals under scales of notation.

Cours de mathematique a l'usage du corps royal de
l'artillerie. Paris, 1770, 1772.
As above. Bezout may have been the source of Napoleon
Bonaparte's advocacy of duodecimals.

Breithaupt, Carl Heinrich Wilhelm
Das Duodecimal-system, vorgeschlagen fur Munze, Maas und
Gewicht in Deutschland, nebst machweisung dass mit Duodecimzahlzen leichter und schneller zu rechnen sei, als
mit Decimalzahlen. Fischer, Cassel, 1849.

Brooks, Edward
The Philosophy of Arithmetic, as Developed from the Three
Fundamental Processes of Synthesis, Analysis, and Comparison,
containing also a History of Arithmetic. Philadelphia, 1876.
Includes a comprehensive description of duodecimal
notation and arithmetic.

Brown, Donald M.
"Duodecimal Recreations,"

Buchanan, W. M.
Dictionary of Science and Technical Terms. London, 1876.
Duodenary arithmetic defined.

Buffon, Georges Louis Leclerc, Comte de
Essai d'arithmetic morale, Paris, 1777. Suppl. 4, to
Histoire Naturelle, Generale et PARTICULiere.
Encyclopedia des sciences mathematiques, "Vante les
avantages du systeme duodecimale et propose deux nouveaux
symboles pour les nombres dix et onze. Ecrit vers 1760.
Aussi, Mem. Acad., 1751."

Cajori, Florian
Duodecimal base thought much the best, but change thought
impossible of accomplishment.

Excellent material on the origins of the Hindu-arabic
notation and its development, and suggestions for other
notation systems.

Camp, Kingsland
"Duodecimal Nomenclature,"
A proposal for an entirely new system of monosyllabic
names for duodecimal numbers and number-pairs.

"Duodecimal Nomenclature,"
A second paper on the same subject, tabulating the names
for number-pairs from 00 to 2E.
Camp, Kingsland, (continued)

"A Duodecimal Slide Rule,"
A review of the scales and their forms which should be embodied in the proposed duodecimal slide rule.

Proposes a new set of number symbols for duodecimals.

Suggests a pattern of multiplication table for duodecimals which accents their symmetry.

Caramuel, Joannis, (Juan de Lobkowitz.) (Bischof Johannes Caramuel y Lobkowitz.)
The arithmetic of bases 2 to 10, and 12, is given on pages 43 - 70.

"duodecimal scale," that scale of notation in which the local value of the digits increases twelfe-fold as they proceed from right to left, instead of tenfold, as in ordinary computation.

Cauchy, Augustin Louis
Elementa Doctrinae Numerorum, 1841.
Dickson notes that he discussed indicators relative to the base m.

Œuvres, Paris, 1885.
v. 1, p. 439, "1 2 3 4 5 14 13 12 11 10," presenting the idea of inverse notation, in which John Leslie, (1817) preceded him.

"duodecimal," reckoning by twelves and powers of twelves.
"duodecimal arithmetic,"
"duodenary arithmetic," that system in which the local value of the figures is in a twelfe-fold proportion from right to left, instead of the tenfold proportion of the common decimal arithmetic.

Chapelle, M. F.
Origine geometrique des systemes de numeration decimal et duodecimale. St. Etienne, 1895.

Chapin, Warren H.
With casual consideration of duodecimals.

A disc proposed for use as a linear yard measure, as well as a protractor for the duodecimal circle.

Christofferson, H. C.
A duodecimal proposal.

Chriswell, M. Irving
Details of a proposed duodecimal micrometer and steel scale.

Chrystal, G.
An elementary textbook for the higher classes of secondary schools and for colleges. Part I, p. 168, outlines duodecimals and suggests the use of lower case Greek Tau and Epsilon for τ and Ε

Civil Engineering. Monthly, A.S.C.E., N.Y.
Anti-metric paper by a member of the Duod. Soc.

Proposes the use of the "uncial" (duodecimal) notation and arithmetic with our accustomed weights and measures, as preferable to adoption of the metric system.
Clark, Jacob M.,
"Joktanic Arithmetic," (duodecimal)
in Trans. A.S.C.E., v. 11, p. 408. Read 18 June 1881,
publd., Dec. 1882.

Claudel, Modeste
Reflexions sur les Systemes de Numeration, ou l'on demontre
qu'aucun d'eux ne peut prevaloir sur le systeme decimal.

Colles, George Wetmore
"The Duodecimal System,"
in Mechanical Engineering, Oct. 1945, p. 682.
Letter to the editor recommending the advantages to be
secured through dividing our weights and measures in the
scale of twelve.

"The Metric versus The Duodecimal System,"
Advocates return to the scale of twelve in all the sub-
divisions of our weights and measures, rather than change
to the metric system.

Clear exposition of the duodecimal system, emphasizing
the advantages which it offers.

"Duodecimal System,"
"It is more convenient in certain respects than the
decimal system, for, since twelve has a larger number of
factors than ten, more fractions can be expressed evenly
in the duodecimal system."

Conant, Levi Leonard
The Number Concept, Its Origin and Development. Macmillan
Co., 1896.
Includes material on the duodecimal notation.

"Primitive Number Systems," in Annual Report of Smithsonian
Inst., July 1892.
Contains excellent material on duodecimal system, but
states general adoption is impracticable. Also see
listing under Humboldt.

Condit, Frederick
"The Appeal of Duodecimals,"
An excellent presentation of the advantages of duodecimals,
emphasizing the benefit to the child who will learn in
combination with marching and dancing, the rhythmic do-
decimal count.

Courant, Richard, and Herbert Robbins
p. 6 - 9 cover the use of bases other than ten, including
the duodecimal. Courant was Head of the Dept. of Math.,
N. Y. Univ.

Covey, Elizabeth Baker
"Outline of a Philosophical Approach to the Teaching of
Mathematics," in the Mathematics Teacher, v. 42, n. 3,
Mar. 1950, p. 133.
Reference to the duodecimal base.

Crosby, William Shaw
"On the Graduation of Scales," in Duod. Bul., v. 5, n. 1,
June 1949, p. 2.
Suggests various forms of graduation for duodecimal scales.

"The Rounding Off of Uncials," in Duod. Bul., v. 6, n. 1,
Points out that, in duodecimals, the half should be
rounded toward the odd rather than the even figure as
with decimals.

Dantzig, Tobias
Calls the use of the decimal base a physiological accident.
His favorable comment on the duodecimal base is cited in

d'Autremont, Louis Paul
The Duodecimal Perpetual Calendar. Lounsberry Co.,
Duluth, 1926.
Proposes a perpetual calendar of twelve months of thirty
days, with terminal holidays at year's end. Each month
composed of 5 weeks of 6 days each, omitting Thursday.
Calendar is illustrated, using duodecimal notation and
special duodecimal characters. Condensed version appears
d'Autremont, Louis Paul (continued)
 "The Rank of Numbers," in Duod. Bul., v. 6, n. 3, Dec. 1950,
 p. 62.
 Numbers ranked by their ratio to the number of their
 divisors, emphasizing the pre-eminence of six and twelve.

Davies, Charles, and Wm. G. Peck
Mathematical Dictionary and Cyclopedia of Mathematical
Science. A. S. Barnes, and Burr, N. Y., 1859.
Duodecimal notation reviewed on p. 49, using Phi for \(\Phi \),
and Pi for \(\Pi \).

Davis, Harold Thayer
 Chapter on "The Duodecimal System," p. 6 - 12, covers
 duodecimal arithmetic, with applications and numerous
 problems. Uses T for \(\Theta \), and E for \(\Lambda \).

De France, Charles Q.
"Expansible Integers." in Duod. Bul., v. 3, n. 1,
 An essay on several particular types of prime numbers and
 the associated reciprocals. Also see paper of The Research
 Comm. on "The De France Algorithm," in Duod. Bul., v. 3,
 n. 2, June 1947, p. 12.

Delambre, Jean Baptiste Joseph, - see Mechain.

de Montholon, C. T.
History of France under Napoleon. London 1824.
 A large part of this work was dictated by Napoleon to the
 Conte de Montholon, who shared his exile. In v. 4,
 sec. 4, chap. 7, p. 200-205, Napoleon comments on the
 awkwardness of the meter, and the relative convenience
 of dividing weights and measures by twelve.

De Morgan, Augustus
Arithmetical Books from the Invention of Printing to the
 Credits Fryer Lucas de Burgos, 1515, (Luca de Pacciola)
with originating the sign of Radicility.

"Arithmetic and Algebra," in Baldwin and Craddock's Library
of Useful Knowledge, v. 1a, sec. 73, London, 1836.
 Covers the use of various scales of notation, including
the duodecimal.

De Morgan, Augustus, (continued)
Elements of Arithmetic. Taylor, Walton and Moberly.
London, 1846.
 Appendix III, Scales of Notation.

On the Study and Difficulties of Mathematics. Society for
 Chapter 2, Scales of Notation.

Dickson, Leonard Eugene
History of the Theory of Numbers. 3 vol. Carnegie
Institution, Washington, 1919.
 Many references to the use of various number bases,
indices, and moduli.

Do-Metric System of Weights and Measures.
 Linear Measures, Duod. Bul., v. 6, n. 2, p. 22.
 Units of Mass, Duod. Bul., v. 6, n. 3, p. 65.
 Units of Time and Angle, Duod. Bul., v. 6, n. 3, p. 66.

Duodecimal Bulletin. Official publication of the Duodecimal
Society of America, Staten Island 4, N. Y.
 1945 v. 1, n. 1, 2, 3.
 1946 v. 2, n. 1, 2.
 1947 v. 3, n. 1, 2, 3, 4.
 1948 v. 4, n. 1, 2, 3.
 1949 v. 5, n. 1, 2.
 1950 v. 6, n. 1, 2, 3.
 1951 v. 7, n. 1.
 Index by Authors, Titles, and Subject, of volumes 1 - 4
appears in v. 4, n. 3.

Du Pasquier, Louis Gustave
Le Developpement de la Notion de Nombre. Paris 1921.

Edinburgh Review, 1807, v. 9, p. 376, art. 8.
 Unsigned article by John Playfair, 'Base du Systeme
Metrique Decimal.'

A critical review of Mechain and Delambre's report of that
title, to the French Royal Commission. Reprint of this

Eginhard, - -
"Twelve Directions,"
Eginhard, (continued)
Paper prepared by F. Emerson Andrews on Eginhard's material, dividing the compass into twelve directions, and giving the names of the respective winds. Abstracted from this Frankish historian's Life of Charlemagne.

Elbro, G., Rear Admiral, R. N.

Eldridge, R. C.

Reply to N. Y. Hubbard, "The Duodecimal System," in issue of 18 Apr. 1903, p. 299, which was a strongly pro-metric letter to the editor. Eldridge advocates adoption of the duodecimal notation and a duodecimal system of weights and measures.

Encyclopedia Americana, New York.

"The duodecimal scale would be better on several accounts, although a change is not practical." Also indexed under "Duodecimal Scale."

"Arithmetic."

"If mankind had had six fingers on each hand, and six toes on each foot, we should be using a duodenary scale (base twelve) which would have been far more convenient." Credits the Babylonians with having discovered the convenience of the duodecimal system.

Encyclopédie Methodique, Paris, 1784.

Explains the use of various scales, and method of conversion from one scale to another.

Encyklopedie der Mathematischer Wissenschaften. B. G. Tuebner, Leipzig, 1898.

The Duodecimal Bulletin

Encyclopédie des Sciences Mathematiques. Gauthier-Villars, Paris, 1908. (French revision and translation of the same work.)

Excellent footnotes and bibliography in French edition. Under Fundamental Principles of Arithmetic, both cover Number Systems, and refer to Blaise Pascal, 1654, Joannis Caramuel, 1670, and E. Ullrich, 1891.

Fehr, Howard
Covers duodecimals in section of Number Concept.

Fermat, Pierre de
"Factoring Formula."

Letter to Frenicle, 1640.
Mentions primes of the form $6n+1$.

Ferrari, Silvio, Baron
Calcolo Decidoozionale, Turin 1854.
Calcol Decidouzinal, Turin 1857.
Duodecimal arithmetic and mensuration.

Estratto dell'opera Calcolo Decidoozionale. Turin, 1854.
Applied duodecimals.

Fibonacci, Leonardo
Liber Abaci, Tuscany 1202.
Pioneer work in the introduction of the Hindu-Arabic notation into Europe.

Flegel, Edward Robert
.... "the Aphoc of Benu, who count by simple words to 12, and then proceed with 12 and 1, 12 and 2, 12 and 3, etc."

This is a citation of Hermann C. H. Schubert, in G. E. Neumayer's Anleitung zu Wissenschaftlichen Beobachtungen auf Reisen; Berlin, 1888.

Funk and Wagnalls
"Duodecimal," Denoting a system of reckoning by twelves, or a notation whose base is twelve.

Garnier-Descheues, Edme Hilaire
Gauss, Carl Friederich
Disquisitiones Arithmeticae. Paris 1801.
Dickson notes, "discussed the relations between indices for different bases, and the choice of the most convenient base."

Gautier, A. D.
Essai sur le calcul duodecimal et opuscule sur les sons alphabetiques. Paris, Carillian and Dalmart, 1843.
La Zononie concerne les deux arithmetiques, la decimale et la duodecimal, ou le metrique et la zonometrice. Paris, Dalmart, 1862.

Gelin, E.
"Du Meilleur Systeme de Numeration,"
Advocates the duodecimal notation.

Gerbert, Pope Sylvester II.

Gilson, R. Cary see entry under "M. P."

Glazier, Harriet E.
Number Bases, p. 23.

Godjevatz, Velizar
A new and simple musical notation based on the exact correspondence between the notes of the chromatic scale and the duodecimal powers of 2, which express their relative vibration rates. Condensed into an article of the same title in Duod. Bul., v. 4, n. 2, Oct. 1948, p. 1.

Grenholm, Pehr August
On duodecimal systemet som ett nytt decimal-system.
Progr. Umea., 1867.

Grunwald, Vittorio
Saggio di Arithmetica,
Non decimale con applicazione del calcolo duodecimale e trigesimale a problemi sui numeri complessi. Verona, 1884.

Gutmann, Robert
"Expansible and Reversible Squares,"
A variation on the De France theme of expansible integers.

Halliday, G.
"Suggestions for a Duodecimal System of Notation, Weights and Measures,"
in Electrical Engineer, London, April, 1896.

Halsey, Frederick A.
In Trans. A.S.M.E., v. 28, 1906, p. 842-925, points out that a change in our system of notation to the duodecimal is fraught with greater possibilities of improvement than any conceivable change in our weights and measures.

Hammer, H. K.
Table of Periods of Reciprocals of Primes in Various Number Systems.
Unpublished typed manuscript in library of Brown University.
Reciprocals of primes 2-97 on bases 2-12.

Harkin, Duncan
Reference to George S. Terry and duodecimals p. 6 and 36. States Sumerians used a twelve hour day, used a numerical notation with place value and a symbol for 0 in 500 B.C.

Harriot, Thomas, (Hariot.)
Mss. in Egremont Collection, British Museum, shows calculation on binary base in author's hand, 65 years before Leibniz. (About 1610.) See listing of John W. Shirley.

Haser, August Ferdinand
Anleitung zum Rechnen nach dem Duodezimal-system. Lemgo, Meyer, 1801.

Hatton, Edw.
Hawkes, Herbert E.

Heaslet, M. A. see Uspeinsky and Heaslet.

Hooper, A.
Casual mention of duodecimals, p. 6.

Horstig, K. G.
Das Arithmetische Duodecimal-system. Leipzig, 1871.

Hubbard, N. Y.
"The Duodecimal System,"
Letter to the Editor, strongly opposing the idea of a change to the duodecimal system, and advocating the adoption of the metric system.

Humboldt, Friederich Heinrich Alexander, Baron Von
In Conant’s “Primitive Number Systems,”
“In discussing the number systems of the various peoples he had visited, Humboldt remarked that no people had ever used exclusively that best of bases, 12.”

Humphrey, H. K.
“Conversion Doubles,”
Duodecimal numbers which represent twice as much as the decimal interpretation of the same digits.

“Elements of the Proposed Duodecimal Slide Rule,”
Discussion of the design of the duodecimal slide rule.

“Machine Conversion of Decimals and Duodecimals,”
Method of conversion using decimal machine.

James, Glenn and Robert C.
Duodecimals defined under "duodecimals," and "base."

Janes, W. C.
"The Duodecimal System,"
Paper on the elements of duodecimals.

Johnson, Donovan A. see Syer, Henry M.

The Reverse Notation, Introducing Negative Digits with 12 as the Base. Blackie and Son, London and Glasgow, 1937.
Condensed into an article of the same title, in Duod. Bul., v. 6, n. 2, Aug. 1950, p. 25. Also see A. G. Gauchy, and John Leslie, who proposed inverse notations for the decimal base.

Jones, Burton W.
Includes excellent exposition of duodecimals.

Jordaine, Joshua
Duodecimal Arithmetic, viz: notation, addition, subtraction, multiplication, division, rule of proportion, (direct and reverse,) duodecimally performed. London, 1687.
Copy at one time in British Museum.

Duodecimal Arithmetic and Mensuration Improved. London, 1727.
Listed under "duodecimal," in Murray’s English Dictionary, 1897.

Karpinski, Louis
Gives history of counting and numbering systems of antiquity, and their notations.

Kasner, Edward, and James Newton
Material on duodecimals, p. 190.

Kerble, W. F.
Letter Systems in Business and Technology.
Pamphlet, pubd. by the author, 1942.
Notation systems for bases up to 60, using literal notation.
Kimber, Thomas
A Mathematical Course for the University of London.
Longmans, Green, London, 1876.
"If man had been constituted a twelve-fingered animal,
we should now have possessed a much more convenient
system of numeration than we do."

Klugel, Georg Simon
Mathematische Worterbuch. 1830.
Zahlensystem. Theil 5, p. 1161-1178.
Description of various number systems, with obscure refer-
ence to Emperor Fohi of China, and the Ye King notation.

Kokomoor, Franklin Wesley
Duodecimals, p. 117-121.

Korzybsky, Alfred
Duodecimals, chap. 8 and p. 257.

Kraitchik, Maurice
Notes on the use of various number bases, including the
duodecimal, as well as the use of the inverse notation.

Kramer, Edna E.
N. Y., 1951.
First chapter treats largely of number bases, including the
duodecimal, p. 16.

Krause, Karl Christian Friederich
Grundlage der Arithmetike, Jena, 1803.
Covers the use of different number bases, 2, 10, 12,
and 60. p. 265.

Lagrange, Joseph Louis
Duodecimal notation, p. 32.

Lagrange, Joseph Louis, (continued)
"Lecons elementales sur les mathematiques," in Journal de
l'Ecole Polytechnique, 1795.
"For a number written to Base A, its remainder on
division by (a - 1) is the sum of its digits."

Laplace, Pierre Simon
"The duodecimal scale has the inconvenience of requiring
that we retain the products of twelve numbers, which sur-
passes the ordinary length of memory to which the decimal
scale is proportionate." see excerpt in Duod. Pol., v. 3,
n. 2, June 1947, p. 6.

Larousse, Pierre
Under "duodecimal," an excellent exposition of the
duodecimal arithmetic.

Lee, J. H. Rutherford
Duodecimal Weights and Measures. Monograph, personally
printed, Hamilton, New Zealand, 1940.
A systemization of the British weights and measures on
the scale of twelve, without implication of the duo-
decimal notation. Proposes many ingenious new terms.

Leech, Thomas
Dozens versus Tens, or the Ounce, the Inch, and the Penny,
considered as the Standards of Weight, Measure and Money,
and with reference to a Duodecimal Notation. Robert
Hardwicke, London, 1866.
A duodecimal proposal based on the English standards,
incorporating some improvement in the present lack of
system, but not thoroughly systemized.

Lehmer, Derrick H
Review of Tables of V. Thebault. "Table of Squares of
Integers 1 - 1000. Bases 2-12." Mathematical Tables and
Other Aids to Computation, v. 2, n. 14, April 1946, p. 72.

Lehmer, E. T.
"Terminations des carres dans le base 12 et autres bases,"
in Sphinx, v. 9, 1939, p. 51 - 54.
Leibniz, Gottfried Wilhelm von
Mss. in Bibliothek Hannover, 1676.

Calculation on any base. Developed binary arithmetic
and the calculus.

Leslie, John
The Philosophy of Arithmetic. Edinburgh, 1817.

Duodecimals explained p. 25, 33 - 39. Also presents the
idea of inverse notation, viz: \(1231 = 1030 - 201 = 829\).
Thus, predecessor of Cauchy and Johnston. Used novel
symbols for \(\pi\) and \(\varepsilon\).

Lien, Dallas
"A Better Ratio for \(\pi\),"

"It suggests definition of the circular constant against the
radius, rather than the diameter, to obtain congruence
with radian measure.

"Table of Equivalents for 1 Meter,"
in Duod. Bul., v. 6, n. 3, Dec. 1950, p. 54.

Equivalents expressed in units of the Do-Metric System.

"Units of Fine Measurement,"

Defines names and sizes of micro-measures of the Do-metric
system.

"The \(\pi\)-Unit,"

Proposes a unit for fine linear dimensions, congruent
to the Do-metric measures.

Lion's Puzzle Club. Supplement to The Lion, official publica-
tion of The Lion's Club. Chicago.

Duodecimal cryptarithms in n. 50, Mar. 1946, and n. 52,
July 1946.

Lloyd, Mary
"Duodecimal Recreations,"
in Duod. Bul., v. 1, n. 1, Mar. 1945, to v. 3, n. 2,
June, 1947.

Lodge, Sir Oliver

"It would have been far more convenient if the human race
had agreed to reckon everything in dozens, but as they
had in early semi-savage times arranged otherwise, we
must now make the best of it."

Logsdon, Wayne I.

Includes description of the duodecimal system.

Lubsen, H. B.
Mathematics Self Taught. Adapted from the original German
by Henry Harrison Suplee. N. Y., 1906.

The use of bases 2 - 12 is covered p. 300 - 310.

Mathematical Tables and Other Aids to Computation. Quarterly,
National Research Council, Washington, D. C.

The following duodecimal items have been listed:

A Duodecimal Slide Rule, Kingsland Camp, Duod. Bul.,
v. 4, n. 2, 1948.

Pythagorean Triangles and Their Inscribed Circles, H. C.

Recreations Mathematiques, V. Thebault, Table of Squares of
Integers 1 - 1000, Bases 2 - 12, Apr. 1946.

Tables of Reciprocals of Primes 2 - 97, Bases 2 - 12.
H. K. Hammer, Apr. 1946.

Mathematics Teacher, The. Monthly, Nat'l Council of Teachers of
Mathematics, Washington, D. C., has included the following
duodecimal articles.

Alice in Dozenland, Wilimina Pitcher. 1934. A playlet
about duodecimals.

A Crucial Aspect of Meaningful Arithmetic Instruction.
J. Fred. Weaver, v. 43, n. 3, Mar. 1950, p. 112. In
addition to the duodecimal material in the paper, has a
foot-note reference to F. Emerson Andrews' "New Numbers."

Decimal-Form Fractions to Various Bases,
Fractionals on bases two to twelve.
Mathematics Teacher, The (continued)

Fractionals and the Unit Point, Ralph H. Beard. v. 43, n. 8, Dec. 1950, p. 419.

McClelland, Nina
"An Ideal Numerical Base,"

College term paper, advocating the duodecimal number base.

McDowell, C. H.

Includes definitions of Duodecimal, Duodenary, Scale of Notation.

McKay, Herbert
Odd Numbers. Macmillan, N. Y., 1940.

Material on scales of notation, including the duodecimal, on p. 210-215.

Mechain, Pierre Francois Andre, and Delambre

Mechanical Engineering. Monthly official publication of A.S.M.E., N. Y., has included the following duodecimal items:

Calendars. Review of World Calendar, and Duodecimal Calendar of d'Autremont, p. 746, Sept., 1949.

Merriman, Gaylord M.

Material on duodecimals, p. 17.

Montucla, Jean Etienne

Discusses the use of various bases including the duodecuple.

More, Trenchard, Jr.

Analysis of the notation of musical pitch in the duodecimal powers of 2, and the mathematical and physical factors involved.

M.P.

A strongly pro-duodecimal, and anti-metric paper.

Murphy, George S.
"One Plus One,"

Article on the fundamental mental processes of computation, with special attention to the twelve base.

Defines duodecimal and duodenary. Has bibliographical references to Joshua Jordaine and Peter Barlow.

Comment on the new musical notation of Godjevatz.
Critical comment on the new duodecimal musical notation of Godjevatz.

Napoleon Bonaparte see de Montholon.

Neumayer, Georg Balthasar von
Anleitung zu Wissenschaftlichen Beobachtung auf Reisen.
Berlin, 1888.
288-293, Die Zahlen, by Hermann C. H. Schubert, covers various number systems besides the duodecimal. Refers to "... the Aphos of Benue."

Newman, Bernard
In this science-fiction tale, Newman's Martians count in duodecimals.

Newson, Carroll V.
Description of the use of various number bases, including the duodecimal, p. 44-54.

Newton, James see Edward Kasner.

Noel, E.
Uses duodecimal subdivision of units, but does not mention the duodecimal notation.

Norland, Alfred
Initial work on the author's Twecimal proposal.

Brochure comprehensively presenting this proposed duodecimal system.

Author's condensation of the brochure, The Twecimal.

Northrop, Eugene P.
Material on binary and duodecimal bases, p. 34-36.

Nystrom, John W.
Abstract of remarks before the Franklin Institute on the report of its committee on the compulsory use of the metric system. Journal of the Franklin Inst., 1876, p. 385.
"Duodenal Arithmetic and Metrology," in Duod. Bul., v. 6, n. 1, Feb. 1950, p. 3.
Condensation of his duodecimal proposal, which was published as an appendix to his "New Treatise on the Elements of Mechanics."

Ogilvie, John
The Imperial Dictionary, Blackie & Son, London, 1883.
"duodecimal,""duodecimal or duodenary arithmetic," "duodecimal scale or duodenary scale," that system in which the local value of the figures is in a twelvefold proportion from right to left, instead of the tenfold proportion of the common decimal arithmetic.

Ore, Oystein
Number systems, including the duodecimal, p. 34-37.

Parkhurst, Henry M.
Astronomical Tables, Comprising Logarithms from 3 to 100 Decimal Places, and Other Useful Tables. N. Y., 1889.
Contains table of duodecimal logarithms.

Pascal, Blaise
De Numeris Multiplicibus, Paris, 1665.
Encyclopedie des Sciences Mathematiques comment, "une notion claire d'une numeration a base quelconque."
Pitcher, Wilimina P.
Alice in Dozenland. Playlet, the Mathematics Teacher, 1934.

Pitman, Sir Isaac
Phonetic Journal, 1855-1858. The Number Reform.
Series of papers on the use of base 12 in numeration, weights and measures, and English currency.

"Reckoning Reform." in Bedfordshire Independent, 24 Nov. 1857.
Proposed the change to the duodecimal base.

Playfair, John
Also included in his "Works," Edinburgh, 1822.

Puigals de la Bastida, Vincente
Filosofia de la Numeracion, o Descubrimiento de un Nuevo Mundo Cientifico. Barcelona, 1844.
Description of the duodecimal system. Refers to duodecimals as "natural numbers."

Quakenbos, G. P.
Under "Other Scales," the duodecimal system is described and explained, p. 13.

Reed, Thomas Allen
Number reform on the base 12, covered p. 77.

Reeve, Sidney
Suggests the desirability of considering change to the duodecimal system, rather than to adopt the metric system.

Research Committee of the Duodecimal Society.
"The De France Algorithm for Finding the Length of Period of Reciprocals of Primes,"

Peacock, George
Article on Arithmetic, includes exposition of the duodecimal base.

Peck, William G. see Charles Davies.

Perry, Grover Cleveland
The American System of Mathematics, 1, 2, 3, 4, 5, 6, 7, 8, 9, T, L, 10.

Phonetic Journal, 1855-1858.
Number Reform, of Sir Isaac Pitman.
Series of papers in monthly journal devoted to the system of phonetics and shorthand, which Pitman referred to as the Spelling Reform, the Writing Reform, and the Reckoning Reform.

Pierce, Robert Morris
Problems of Number and Measure. Chicago, 1898.
Brochure on duodecimal system. Review of bases 8, 10, 12, and 16, and a suggested system of nomenclature. Includes good bibliography.
Research Committee of Duod. Soc. (continued)
Material supplementary to the De France paper on
Expansible Integers.

"More About Square Sums of Consecutive Squares,"
Supplementing paper by Terry and Robert, on "Square
Sums of Consecutive Squares."

Reynaud, Antoine Andre Louis
Notes sur les differens systemes de numeration; du
systeme duodecimal, p. 312-318. Also see Bezout.

Richardson, M.
Material on the use of other bases than ten, including
the duodecimal, p. 165-174.

Robert, H. C., Jr.
"An Aid in Calculating 1/N,"
The duodecimal form of the Schiffner algorithm mentioned
by W. W. R. Ball.

"Circulating Dividends,"
A type of number, resembling periodic fractionals, which
is divisible by certain primes regardless of how the
integers are rotated.

"Compensating Errors,"
Examination of the overall probability of error, con-
sidered decimally and duodecimally.

"Complete Solution of the Problem of the Sum of Two Squares
by Trigonometry,"

"The Fibonacci Series,"
Comprehensive review of the features of the series in
its duodecimal form.

Robert, H. C., Jr. (continued)
"List of Primes Not Greater Than 12855,"
Table of primes on bases 2 to 12, listed by length of
period of reciprocal.

"Modern Computing Machines and Split-Base Arithmetic,"
in Duod. Bul., v. 6, n. 3, Dec. 1950, p. 49.
Analysis of arithmetical methods used in mechanical and
electronic computers, and in conversions between binary,
decimal and duodecimal bases.

"Natural Logarithms of the First Eight Primes to Six
Dozen and Three Places,"
Duodecimal natural logarithms of the primes less than
100 to 63 places.

"Numerals of Powers and Powers of Numerals,"
Comment on paper by George S. Terry, with extensions.

"On Weights and Measures,"

"Prime and Factor Table to 3000,"

"Prime and Least Factor Table, 3,000 to 6000,"

"Pythagorean Triangles and Their Inscribed Circles,"
Duodecimal analysis of the perimeters of right triangles
and their relation with the diameter of their inscribed
circles. With a list of such triangles, indexed by the
diameters of their inscribed circles.

"Pythagorean Triangles with Equal Perimeters,"

"Problem of the Coconuts,"
Duodecimal analysis of a familiar problem.

"Square Sums of Consecutive Squares, " (with George S. Terry,)
Robert, H. C., Jr. (continued)
Analysis of a standard problem in number theory, on the
duodecimal base.

"Square Sums of N Consecutive Squares,"
Extension of the work listed above.

"Table of Quarter Squares,"
in Duod. Bul., v. 2, n. 1, Apr. 1946, p. 15.

"Tessellation and Solid Tessellation," (with George S. Terry,)

"To Calculate the log 10 2,"
A simple method of calculating the logarithm of 2 to the
twelve base.

Robertson, H. H. G.
"A Plea for the Duodecimal System,"
Review of the advantages of the duodecimal system, and
forceful advocacy of its replacement of the decimal
system. Presents a proposed system of notation and a
system of weights and measures.

Robinson's New Higher Arithmetic. American Book Co.,
Chicago, 1895.

"A Strictly Duodecimal Coinage."
Editorial, favoring the modification of the British coinage
into duodecimal regularity.

Schubert, Hermann Caesar Hannibal
in Enzyklopaedie der Mathematischer Wissenschaften,
Leipzig, 1898. Also in the French translation of the
same work, Encyclopedie des Sciences Mathematiques,
Covers the duodecimal system, as well as other systems of
notation, with exposition of the methods of conversion.

"Die Zahlen," in G. B. Neumayer's "Anleitung zu Wissenschaft-
lchen Beobachtung auf Reisen."

Schubert, Hermann Caesar Hannibal (continued)
Discusses the use of various bases, including the duodecimal. Mentions the "Aphos of Benue," as cited under
"Flegel."

Zahlen und Zahl. Hamburg, 1887.
Describes the use of the duodecimal notation, p. 11-12.

Scifres, Eugene M.
"Calculating π,"
Exposition of simple method of calculating the duodecimal
value of π.

"The Duodecimal Slide Rule,"

Seelbach, Lewis Carl
Proposal for a duodecimal nomenclature providing
monosyllabic names for numbers and fractions on the
12-base.

"An Item on Triangular Numbers,"
A duodecimal exposition of an alternate method of
deriving the triangular numbers.

Notes to guide bibliographical research.

Dipping into Dozenals.
Manuscript of an unpublished elementary duodecimal
arithmetic, in possession of his widow, Mrs. Mary
Blanchly Seely.

Shaw, George Bernard
Eulogy and notes on his advocacy of duodecimals. With
woodcut.

Shaw, George Bernard (continued)
His letter on the Godjevatz musical notation based on
duodecimals, and related comment.

"Basic English and Spelling," letter to London Times,
30 Mar. 1944.
Comment on George S. Terry's "Duodecimal Arithmetic."

Everybody's Political What's What. Dodd, Mead & Co.,
N. Y., 1944.
References to duodecimals, p. 270 and 322.

Shirley, John W.
"Binary Numeration Before Leibniz," in Amer. Journal of
Physics, v. 19, n. 8, Nov. 1951, p. 452-454.
Article include of reproduction of parts of mss. of
Thomas Harriott (Hariot) in Egremont Collection of
British Museum, showing holographic computations in
binary arithmetic. Shirley credits Hariot with opera-
tions in various bases.

Singer, Bernard
Review of "The Dozen System," George S. Terry, in The

Review of "Mathamericana," Grover Cleveland Perry, in The

Smith, David Eugene
Article on "Arithmetique," in Encyclopedia Americana.
"The duodecimal scale would be better on several accounts,
although a change is not practical." Also indexed under
"Duodecimal Scale."

Includes material on duodecimals.

Numbers and Numerals, (with Jekuthiel Ginsburg.) Monograph,
Teachers College, Col. U., 1937.
Includes material on duodecimals, p. 3.

Smithsonian Institution
Annual Report, 1892, p. 589.
Speaks of the idea of abolishing the decimal system, and
substituting the duodecimal. It states that King Charles

Smithsonian Institution (continued)
XII of Sweden was an especially zealous advocate of
this change.

Sommenschein, William Swan
Mentions use of duodenary scale of notation. See "Notes

Spencer, Sir Herbert
Against the Metric System.
First appeared as unsigned letters in the London Times,
which were reprinted in Appleton's Popular Science Monthly,
v. 49, p. 186-202. June, 1896. Also included in his
included in Appendix C, of F. Emerson Andrews' "New
Numbers." Speaking of the duodecimal system, he said:
"... since a better system would facilitate both the
thoughts and actions of men, and in so far diminish the
friction of life throughout the future, the task of
establishing it should be undertaken."

Stein, Heinrich Friederich Karl, Baron von und zum
"Uber die Verleihung der Verschiedenen Numerations-
systeme," in Journal fur die Reine und Angewandte
Mathematik, v. 1, 1826, p. 369.
Discusses the duodecimal system.

Stevin, Simon
l'Arithmetique. Leiden, 1585.
In Mathematische Unterhaltungen und Spiele, W. Ahrens
reports that Simon Stevin in his l'Arithmetique proposed
that the decimal system be replaced by the duodecimal.

Supplee, Henry Harrison. see Lubsen.

Syer, Henry W., and Donovan A. Johnson, Editors of department,
"Aids to Teaching." in The Mathematics Teacher.
Review of F. Emerson Andrews' "An Excursion in Numbers,"
Mar. 1950, p. 129.
Review of George S. Terry's "The Dozen System,"
Tanner, Lloyd
In Messenger Math., v. 7, 1877-8, found how many numbers, N, of n digits to the base r, end with the same digits as their squares.

Tejada, Juan de Dios
Columnist of the Havana daily, Informacion, carried in his column, "La Marca de la Técnica," the following duodecimal items:

Terry, George S.
"The Advantages of Duodecimals,"
Careful statement of the advantages of duodecimals, with suggestion of caution against claiming as systemic advantages those which are fortuitous.

"Conversion of Large Numbers,"
Duodecimal conversion factors for very large and very small numbers.

"Cyclic Sequences,"
in Duod. Bul., v. 6, n. 2, Aug. 1950, p. 35.
Article on cycling reciprocals, with development of parallel geometric constructions.

The outstanding presentation of mathematical tables on Base Twelve. Includes all tables of general usefulness.

The Duodecimal Bulletin

Thureau-Dangin, F.

"The Duodecimal System of Calculation."

Towne, Henry R.
"Our Present Weights and Measures and the Metric System."
Discussion of possible methods of resolving our dilemma, with comment favoring the duodecimal system.

Towne, Sidney
"12 Fingers Would Fix It."
in P. M., (N. Y. daily) 11 Sept. 1944.

Trautwine, John Cresson
Civil Engineer's Pocket Book. John Wiley and Sons, N. Y.
"Duodenal or Duodecimal Notation."
Footnote refers to John W. Nystrom.

Tropfke, Johannes
Excellent bibliographical notes on bases other than ten, p. 4.

Ullrich, E.
"Rechnen mit Duodecimalzahlen."
in Encyklopädie der Mathematischen Wissenschaften, Heidelberg, 1891.

Uspenski, (J. V.) and Haslett, (M. A.)
Scales of notation, p. 13.

Van Buskirk, Paul
"Analysis of Number Systems."
Notes and chart to be used as aids in author's talks on duodecimal system.

"Discrepancies in Metric System."
in Civil Engineering, May 1946, p. 216, in Section, "Our Readers Say."

Van Buskirk, Paul (continued)
"Metric System Unnecessary."
in Civil Engineering, Oct. 1945, p. 480.

"Numbers and the Open Mind."
in Duod. Bul., v. 5, n. 1, June 1949, p. 15.
Advocates the advantages of the duodecimal system.

Wellnagel, Christopher Frideric
Numerandi methodi sive arithmeticae omnes possibles e quibus cum dyadica consequentes plurimae usque ad duocenarium evoluntur. Jena, 1740.

Weaver, J. Fred.
"A Crucial Aspect of Meaningful Arithmetic Instruction."
Explains bases 8, 10, and 12, and refers to F. Emerson Andrews' "New Numbers."

"duodecimal unit," explained as a unit in the scale of numbers expressed through the powers of twelve.

Weidler, Johann Friderich
Dissertatio de praestantia arithmeticae, quae tetracticae et duadicam antecellit. Vitemb., 1719.

Werneburg, Johann Friederich Christian
Beweiss, dass das Zwolfzahlsystem das einzig vollkommen ist, dass mithin die Dekadik unvollkommen ist, 1800.

Williams, Rufus F.
"An Ancient Duodecimal System. Babylonian Conception of Numbers and Measures."
Pessimistic about adoption of duodecimal weights and measures because of their inconvenience with decimal numbers. Conceives duodecimal notation unattainable.

Zehner, --
Die Zwolfsysteme zum Zahlen und Rechnen. Freiburg, 1810.
DUODECIMAL CHRONOLOGY PRIOR TO 1800

1585 Simon Stevin, l'Arithmetique
1610 Thomas Hariot, Binary Numeration
1640 Pierre de Fermat, Letter to Frenicle
1665 Blaise Pascal, De Numeris Multiplicibus
1670 Joannis Caramuel, Vetus et Nova
1676 G. W. Leibniz, Mss. in Bibliothek Hannover
1687 Joshua Jordaine, Duodecimal Arithmetic
1719 Johann F. Weidler, Dissertatio
1731 Edw. Hatton, Intire System of Arithmetic
1740 Christoph F. Vellnagel, Numerandi Methodi
1747 Ioannem Berckenkamp, Leges Numerandi
1760 Buffon, Essai d'Arithmetique Morale
1764 Bezout, Cours de Mathematique
1784 Encyclopedie Methodique, Echelles Arithmetiques
1795 Lagrange, Lecons elementales
1796 Laplace, Exposition du Systeme du Monde
1799 J. E. Montucla, Histoire des Mathematiques

DUODECIMAL MATHEMATICAL TABLES

Bessel Function
George S. Terry, Duodecimal Arithmetic, nine places, p. 290.

Circular Measure
Sin N, cos N, sinh N, cosh N, - N in radians,
George S. Terry, Duod. Arith., p. 278.

Constants
π, e, M, Euler, to 20 places, George S. Terry, Duod. Arith.
p. 60.

Conversion of Angles
Degrees, etc., to duodecimals of circle,
George S. Terry, Duod. Arith., p. 63.
Duodecimals of circle to degrees, etc.,
George S. Terry, Duod. Arith., p. 65.

Conversion of Fract onals, decimals to duodecimals, .000 to .999,
Addition method,
F. Emerson Andrews, New Numbers, ten places, p. 92-93.
George S. Terry, Duod. Arith., nine places, p. 20.

Conversion of Fractionals, duodecimals to decimals,
Addition method,
George S. Terry, Duod. Arith., nine places, p. 21.

Conversion of Numbers, 1 to 1728.

Conversion of Time
Hours, etc., to duodecimals of circle
George S. Terry, Duod. Arith., p. 67.
Duodecimals of circle to hours, etc.,
George S. Terry, Duod. Arith., p. 62.

Cube Roots of Numbers, to six places,
George S. Terry, Duod. Arith., p. 32.

Cubes, 1 to 100
George S. Terry, Duod. Arith., p. 28.
DUODECIMAL MATHEMATICAL TABLES (continued)

Digamma Function
George S. Terry, Duod. Arith., p. 282.

Equivalents for 1 Meter

Exponential Function

Exponential, Sine and Cosine Integrals,

Factorial Function,
George S. Terry, Duod. Arith., p. 288.

Factorials 1 to 20 and Their Reciprocals,
George S. Terry, Duod. Arith., p. 25.

Factors, see Primes

Fractions and Fractionals,
One-half to one-twelfth, decimal and duodecimal,
F. Emerson Andrews, New Numbers, p. 77.

On bases two to twelve.

Functions of Angles
see Sines, etc.
see log Sines, etc.
see Circular measure for radians.

Interpolation Coefficients
George S. Terry, Duod. Arith., p. 294.

Logarithms of Numbers 1 to 100.

Logarithms of Numbers, 1000 to 10,000
9 places, George S. Terry, Duod. Arith., p. 117

Log Sines, Cosines, Tangents, Cotangents, vs duodecimals of circle
9 places, George S. Terry, Duod. Arith., p. 212-257.

Multiplication
F. Emerson Andrews, New Numbers, p. 59 and card insert in rear cover.
George S. Terry, Duod. Arith., p. 12.
George S. Terry, Dozen System, p. 11.
Kingsland Camp, Duod. Bul., v. 1, n. 1, Mar. 1945, p. 27,
and rear cover each issue of Bulletin.

Natural Logarithms
2 to 100, 14 places, George S. Terry, Duod. Arith., p. 274.
1.000 to 1.023, 9 places, ditto, p. 275.

Natural Sines, Cosines, Tangents, Cotangents, vs. duodecimals of circle,
9 places, George S. Terry, Duod. Arith., p. 67.

Periods of Reciprocals of Primes
Primes less than 600, George S. Terry, Dozen System, p. 36.

Powers of Numbers (also see Squares and Cubes,)
Powers 1 to 10 of numbers 2 to 2, and their reciprocals,

Primes
1 to 100, F. Emerson Andrews, New Numbers, p. 116.
1 to 600, George S. Terry, Dozen System, p. 36.

Primes and Factors
1 to 100, F. Emerson Andrews, New Numbers, p. 47.
1 to 1000, George S. Terry, Duod. Arith., p. 23.

Primes and Least Factors

Quarter Squares 1 to 100, H. C. Robert, Jr., Duod. Bul., v. 2, n. 1, Apr. 1946, p. 15.

Radians, Functions of, see Circular measure.
COUNTING IN DOZENS

1 2 3 4 5 6 7 8 9 X E 10
one two three four five six seven eight nine dek el do

Our common number system is decimal - based on ten. The dozen system uses twelve as the base, which is written 10, and is called do or dozen. The quantity one gross is written 100, and is called gro. 1000 is called no, representing the meg-gross, or great-gross.

In our customary counting, the places in our numbers represent successive powers of ten: that is, in 365, the 5 applies to units, the 6 applies to tens, and the 3 applies to tens of tens, or hundreds. Place value is even more important in duodecimal counting. For example, 256 is 2 gro 6 do 5, and 2 dozen-dozen, or gross. This number would be called 2 gro 6 do 5, and by a coincidence, represents the same quantity normally expressed as 365.

Place value is the whole key to dozennial arithmetic. Observe the following additions, remembering that we add up to a dozen before carrying one.

94 136
31 694
96 382
90 1000

You will not have to learn the dozennial table, since you already know it. Mentally convert the quantities into dozenns, and add them down. For example, 7 times 9 is 63, which is 5 dozen and 3. So add up 63. Using this "method", you will be able to multiply and divide dozennial numbers without referring to the dozennial multiplication table.

Conversion of small quantities is obvious. By simple inspection, if you are 35 years old, dozennially you are only 29, which 12 x 2 = 24 is two dozen and eleven. For larger numbers, 12 x 3 = 36, keep dividing by 12, and the successive remainders are the desired dozennial numbers. 12, 17, 10, 9, 8, 5 Answer: 265

Dozenal numbers may be converted to decimal numbers by setting down the units figure, adding to it 12 times the second figure, plus 12² (or 144) times the third figure, plus 12³ (or 1728) times the fourth figure, and so on as far as needed. Or, to use a method corresponding to the illustration, keep dividing by 12, and the successive remainders are the desired decimal number.

Fractions may be similarly converted by using successive multiplications, instead of divisions, by 12 or 10.

Numerical Progression

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Do</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>Gro</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>Mo</td>
<td>24</td>
<td>26</td>
<td>28</td>
<td>30</td>
<td>32</td>
<td>34</td>
</tr>
<tr>
<td>Do-mo</td>
<td>36</td>
<td>38</td>
<td>40</td>
<td>42</td>
<td>44</td>
<td>46</td>
</tr>
<tr>
<td>Gro-mo</td>
<td>48</td>
<td>50</td>
<td>52</td>
<td>54</td>
<td>56</td>
<td>58</td>
</tr>
<tr>
<td>Bi-mo</td>
<td>72</td>
<td>74</td>
<td>76</td>
<td>78</td>
<td>80</td>
<td>82</td>
</tr>
<tr>
<td>Tri-mo</td>
<td>84</td>
<td>86</td>
<td>88</td>
<td>90</td>
<td>92</td>
<td>94</td>
</tr>
</tbody>
</table>

Multiplication Table

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Do</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>Gro</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>Mo</td>
<td>24</td>
<td>26</td>
<td>28</td>
<td>30</td>
<td>32</td>
<td>34</td>
</tr>
<tr>
<td>Do-mo</td>
<td>36</td>
<td>38</td>
<td>40</td>
<td>42</td>
<td>44</td>
<td>46</td>
</tr>
<tr>
<td>Gro-mo</td>
<td>48</td>
<td>50</td>
<td>52</td>
<td>54</td>
<td>56</td>
<td>58</td>
</tr>
<tr>
<td>Bi-mo</td>
<td>72</td>
<td>74</td>
<td>76</td>
<td>78</td>
<td>80</td>
<td>82</td>
</tr>
<tr>
<td>Tri-mo</td>
<td>84</td>
<td>86</td>
<td>88</td>
<td>90</td>
<td>92</td>
<td>94</td>
</tr>
</tbody>
</table>