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COUNTING IN DOZENS

;o2 3 4 s 6 7 8 9 X E 10

one two three four five six seven eight nine dek el do

Our common number system is decimal - based on ten. The dozen system uses
twelve as the base, which is written 10, and is called do, for dozen. The
quantity one gross is written 100, and is called gro. 1000 is called no,
representing the meg-gross, or great-gross.

In our customary counting, the places in our numbers represent successive
powers of ten; that is, in 365, the 5 applies to units, the 6 applies to tens,
and the 3 applies to tens-of-tens, or hundreds. Place value is even more im-
portant in dozenal counting. For example, 265 represents 5 units, 6 dozen, anu
2 dozen-dozen, or gross. This number would be called 2 gro 6 do 5, and by a
coincidence, represents the same quantity normally expressed as 365.

Place value is the whole key to dozenal arithmetic. Observe the following
additions, remembering that we add up to a dozen before carrying one.

94 136 Five ft. nine in. 5.9
31 694 Three ft. two in. 3.2
96 v Two ft. eight in. 2.8
195 1000 Eleven ft. seven in. 27"

You will not have to learn the dozenmal multiplication tables since you al-
ready know the 12-times table. Mentally convert the quantities into dozens,
and set them down. For example, 7 times 9 is 63, whick ts 5 dozen and 3; so
set down 33. Using this “which 15” step, you will he able to multiply and

divide dozenal numbers without referring to the dozenal multiplication table,

Conversion of small quantities is obvious. By simple inspection, 1f you are
35 years old, dozenally vou are only 2£, which 12 )} 365

is two dozen and eleven. For larger numbers, 12 )30 + 35
keep dividing by 12, and the successive remain- 12 2+ 6
ders are the desired dozenal numbers. 0+ 2 Answer;: 265

Nozenal numbers may be converted to decimal numbers by setting down the units
figure, edding to it 12 times the second figure, plus 122 (or 144) times the
third figure, plus 12° (or 1728) times the fourth figure, and so on as far as
needed. Or, to use a method corresponding to the illustration, keep dividing
by %, and the successive remainders are the desirved decimal number.’

Fractions mav be similarly converted by using successive multiplications,
instead of divisions, by 12 or X.

Numerical Progression Multiplication Table

I One 12 3 4 5|6 78 9 % ¢

0 D 1 Edo 2 4 6 8 X10[12 14 16 18 12|
° o i 3 6 910 13|16/ 19 20 23 26 29
100 Gro .01 Egro 4 8 10 14 18200 24 28 30 34 38
1,000 Mo .001 Emo 5 X 13 18 21|26| 28 34 39 42 47
o 6 10 16 20 26]30| 36 40 46 50 58
158300 Do-mo 000, Bdo-mo o752/ 97|56 41 48 55 5% 65
100,000 Gro-mo .000,01 Egro-mo g 12 20 28 34140| 48 54 80 68 74
1,000,000 Bi-mo  .000,001  Ebi-mo 9 16 23 30 39 |46| 55 60 63 76 ag
. X 18 26 34 42|50| 5% 68 76 84 5
1,000,000,000 Tri-mo and so on. 2 1% 99 38 47136l es 7a 83 92 1
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WHY CHANGE?

This same question was probably rife in Europe between
the years 1000 and 1500, when the new Arabic numerals were
slowly making their inching progress in displacing the
comfortable and familiar Roman numbers universally used.
"Why even try to learn to use these heathenish scrawly
symbols, with their stubborn propensity for error, in place
of the beautiful clear numbers which our fathers have used
for untold generations? Think of the needless waste. We
would have to change all of our counting boards and abact.
X is X, isn’t it? And why do we need a symbol for nothing?
You can’t count it! No! Let us keep to our simple tried
and true numerals, and let the barbarians scratch their
heads, and rub themselves out. It will all come to 0 anyhow."

Yet, although it took D years, the new notation became
generally used, and man’s thinking leapt forward like an
arrow sped from a bow. The early years of the Renaissance
marked a new stage in the use of symbols, with the advent
of algebra, fractionals (decimals?), logarithms, analytical
geometry, and the calculus, Can you imagine what it would
be like to try to express the coordinates of points on a
curve in Roman notation?
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Mathematicians became conscious of a new dimension in
symbolism, and the fundamental concepts of number were re-
examined. Man awoke to the fact that different number
bases could be used, and Simon Stevin stated in 1585 that
the duodecimal base was to be preferred to the decimal.

The new Arabic notation accomodated mathematical state-
ment better, and facilitated ideation. All thinking ac-
celerated when released from the drag of the cumbrous
Roman notation.

The parallel seems tenable. The notation of the dozen
base accomodates mathematical statement better, and facil-
itates ideation. It, too, -is a step forward in numerical
symbolism, The factorable base embodies a concurrent
analysis and definition of numbers that stimulates classi-
fication and generalization. Yet this is accomplished by
such simple means that students in the primary grades
easily learn to perform computations in duodecimals, and
can tell why they are better. Literally, the decimal base
is unsatis-factory because it has ““not-enough-factors.”

Then, shouldn’t we change? No! No change should be
made, and we urge no change. All the world uses decimals.
But people of understanding should learn to use duodeci-
mals to facilitate their thinking, and to ease the valua-
tive processes of their minds. Duodecimals should be man’s
second mathematical language. They should be taught in all
the schools. In any operation, that base should be used which
is most advantageous, and best suited to the work involved. We
expect that duodecimals will progressively earn their way into

it
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eneral popularity. But no change should be made. Perhaps
%y the yiai 2000,yor maybe by 1200, which is 14 years later,
duodecimal s may be the more popular base. But then no change
need be made, because people will already be using the
better base.

When one is familiar with duodecimals, a nu@ber of acces-
sory advantages become apparent. Percentage 1s a very use-
ful tool, but many percentages come out 1in awkward figures
because of the inflexibility of decimals. When based on the
gross, twice as many ratlos come out in even figures, and
among them are some of those most used, as thirds, sixths,
and twel fths, — eighths and sixteenths. There are advan-
tages associated with time and the calendar. Monthly inter-
est rates or charges are derived from annual rates, or_the
reverse, by simply moving the unit (dec1mal?) point. fhg
price of a single item bears the same relation to the price
of the dozen, -and so does the inch to the foot.

The proper correlation of weights and measures has always
been one of the world’s serious problems. None of the pres-
ent systems is completely satisfactory. The American and
English standards are convenient to use since they‘are.the
final result of a long process of practical  evolution in
which many inconvenient measures have been adjusted or aban-
doned. The French decimal metric measures have the advan-
tage of being set upon the same base as the pumber system,
and are well systemized. But many of the units are awkward
because of their arbitrary sizes, and because their decimal
scale does not accomodate division into thirds and fourths
readily.

The duodecimal system of weights and measures, based on
the inch and yard, the pint and the pound, has the deS}rable
elements of both systems, and few of their faults. This Do-
Metric System retains the familiar units of the American and
British standards in approximately their present size, and
arranges them into an ordered metric system using the scale
of twelve. This fits perfectly into the dgode01ma1 notation,
and the combination accomodates the inclusion of the units
of time and of angular measure within the system, which
hitherto has not been possible.

If “playing with numbers” has sometimes fascinated you, if
the idea of experimenting with a new number base seems 1n-
triguing, if you think you might l}ke to be one of the ad-
venturers along new trails in a science which some have
thought staid and established, and without new_tralls,'then
whether you are a professor of mathematics of international
reputation, or merely an interested pedestrian who can add
and subtract, multiply and divide, your member ship in the
Society may prove mutually profitable, and is cordially invited.

v
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All figures in italics are duodecimal.

AN EXPONENTIAL EXPRESSION FOR MUSIC
by Trenchard More, Jr.

INTRODUCTION Let me first congratulate Velizar Godjevatz on
his new musical notation. After taking ten years of piano
lessons, I am still pitifully slow at reading, and perhaps

now I will never bother to learn that impossible collection of
old conflicting notations. The new stave should bring the
pleasure of rapid musical reading within the scope of those
who are unable to practice four to eight hours a day. I have
tried writing music solely in dozenal numbers, but this presents
too much detail for the eye to grasp quickly. Because of its
greater simplicity, the Notation Godjevatz lies closer to
beauty than the old musical script.

DIFFICULTIES However, the dozenal numbers representing God-
Jevatz's ““Absolute Pitch” remain mathematically arbitrary, as
well as the “Audition Range”, most existing pitch standards,
and most existing notations. Although the idea of numbering
notes is a good one, the present duodecimal musical numbers
are a logical sequence of symbols rather than a powerful mathe-
matical tool. The lettering of notes appears to be based on
habit rather than necessity, both in the new and old notations,
and when these letters evolve into such forms as f3fff or

Di2A #Ft or e'''hp, the spirit of simplicity revolts. In the
field of theoretical music there are apparently as many dif-
ferent alphabetic notations as there are experimenters.

OBJECTIVE If possible, we must adopt in our duodecimal simpli-
fication of science a system of music satisfactory to the art-
ist, physicist, and mathematician. This system should be able
to contain and encourage future developments in music without
having to be discarded for a different method. It should be
thoroughly grounded, unified, and flexible.

DEFINITIONS Sound is divided into the two categories of noise
and musical tone, which are distinguished by periodicity.

Noise has no period; that is, it does not repeat itself in con-
stant intervals of time. A musical tone has Force (the ampli-
tude of the sonorous body), Pitch (the rate of periodicity),
and quality (how the sonorous body vibrates within each period).
We are concerned only with absolute pitch (pitch standards and
pitches of musical instruments) and relative pitch (musical
intervals octave, fourth, fifth, etc.). We define a cycle as

a period, and frequency as the rate of periodicity or the num-
ber of cycles per unit time. A musical interval is a ratio of
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the frequencies of two notes in cycles per unit time. A chord
is composed of two or more intervals, or three or more musical

tones.

BASIC IDEA 1t is necessary to select a suitable musical inter-
val as the standard for all other intervals. The ear has the
peculiar property that it enjoys simple numerical ratios; such
as 1:2, 2:3, 3:5, etc. Of these, the simplest, and most used
interval in music 1s the frequency ratio of 1:2, or the octave.
The choice of the octave as the standard interval is the only
arbitrary assumption in this system. From it, the notation
and all else is derived mathematically. Of course there are
many discriminations to be made, but these will be based on
our first assumption. The choice of a unit of time will be
mentioned later.

The curve of pitch must double itself in every progressive
octave. Therefore,
y = 2% (L)

where y is the frequency in cycles per unit time (pitch), and
X is the number of octaves (intervals of 1:2). Equation (1)
represents an exponential curve which intercepts the y (ordin-
ate) axis at the point (x = 0, y =1). The curve lies above the
x axis, and approaches it asymptotically to the left. We need
only that portion of the curve which lies in the {first quad-
rant, upper right. At present, an arbitrary point on this
curve is used for a standard, which has the decimal coordinates
(8.781, 440). This standard leads to a complicated formula for
the calculation of the American Equally Tempered Chromatic
Scale, to which most pianos are tuned.

N
210g2 440 12 (2) dec
where y equals the frequency in cycles per second, and N equals
the number of semitones above or below A, 440. For the semi-
tones below 440, N becomes negative,

Tt seems better to avoid arbitrary constants and to retain
the simple form of equation (1) by letting our standard point
on the curve be the y intercept (0, 1); (grounded). Then all
frequencies, absolute and relative, may be represented directly
by exponents of 2; (unified). Instead of multiplying and divid-
ing frequencies, we add and subtract their exponents. We will
abolish both the alphabetic notation for absolute pitch, and
the Roman numeral notation for relative pitch by using their
exponents only. Then any absolute pitch, and any musical inter-
val may be represented to any desired degree of accuracy by an
exponent of 2; (flexible). Here there are no constants, stan-
dards, and symbolic notations to hamper accuracy and expression.
There are no arbitrary and complicated conversion methods to
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apply between absolute and relative pitch, notation and actual
frequency, or one notation and another. The exponential ex-
pression for music is built as closely as possible about the
curve y = 2%. If those who advance further in the field do
the same, unification may be preserved. I hope that this
curve is basic and flexible enough to accommodate the now un-
foreseen advances in music.

INTERVALS Since scales are based on intervals, the interval
is mentioned first. We wish to find an exponential representa-
tion for the frequency ratio of v : w cycles per unit time.
This is given by the equation

log v - log w

-9 “log 2 v>w>o (3)

€|<

where the log may have any convenient base, the most suitable
for this paper being do (one dozen). Then all intervals of
the form v : w will be represented by the numerical equiva-
log v — log w
R
or letters. The table “Names and Ratios of Intervals’ has
been calculated for the more prominent musical intervals. Try
adding the pure fourth and fifth together, or the major third
and the minor sixth, or the minor third and the major sixth,
or the major second and minor subdominant seventh, and you
will note the ease with which these intervals may be handled.

The “Interval Chart’’ may be of aid to the experimenter. To
find the interval for the ratio of 3 : 8§ or &8 : 3, trace
the diagonal leading from 3 to the point where it intersects
the diagonal leading from 8§ Immediately to the right of the
arrowhead formed by these two diagonals is the answer 1, 4£92.
Every other diagonal has been omitted to ease the eye, so that
every whole number on the left has two diagonals leading from
it; one blank; and one drawn. Of course this table may be ex-
tended, but nearly all of the useful intervals are included
within the combinations of the first dofour (14) digits. The
experimenter may find some very pretty ‘‘Tuns’ in this triangle
by playing each interval of a diagonal in succession. There
are also several arithmetical properties in the table which
increase its intrigue, and facilitate its computation.

SCALES A scale is a series of absolute pitches which double
their frequencies in each progressive octave. Thus each oc-
tave of notes is a duplicate of the next, except at a different
level of pitch. The notation for absolute pitch is given
directly by equation (1), and is more easily calculated by
equation (4).

lent of instead of arbitrary names, numerals,

-

Interval

[ T ST e S A L T T Y

o

. 0000
L 0015544

. 1000

L1148
L1928
. 2000
. 2058
. 2382
. 2804
. 5000
L3126
Sl
. 4000
L4426
L4592
.5000
.59%%
. 6000

. 7000
. 7028
.8000
.8179
.8816
. 8000
.93%8
. 9831
L9564
. %000
LX214
X%71
. £000
. 0000
. 2058
. 2804
.31%6
B2V
L4892
L7028
.8179
.8%16
. 9831
L0000
L 3Xd4—
. 702%
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NAMES AND RATIOS OF INTERVALS

Ratio
1:1
14:18
X

9 :8
&7
7.6
8 : 5
507 4
9: 7
4 8
75
32
8 : 35
5: 3
10: 7
7 4
14: 9
9.5
13:8

21
9 4
7:3
10 5
5: 2
8 : 3
3.1
147 5
X 3
72
4 01
51
8 . 1

Name and Description

unison  prime partial tone or harmonic

cent 1.000 5755 : 1 used in physies; 71200th
root of 2

equal (tempered) semitone
dozenth root of 2

Jjust (true) semitone
Just minor tone
equal second sixth root of 2
just major second
supersecond
subminor third
equal minor third

1.059 461 @ 1,

fourth root of 2
just minor third
just major thard
equal major third cube root of 2
supermajor thard

Just and Pythagorean fourth

equal fourth dozenth root of 25
subminor fifth

equal tritone or augmented fourth squere
root of 2

equal fifth dozenth root of 27

just and Pythagorean fifth

equal minor sixth  cube root of 2?

just minor sixth

just major sixth

equal major sixth

supermajor sixth

subminor seventh

fourth root of 23

minor seventh used in the subdominant
equal minor seventh sixth root of 27
acute minor seventh

Jjust major seventh

equal major seventh dozenth root of 22
octave second partial tone

ninth

subminor tenth

minor tenth

major tenth

eleventh

twelfth  third partial tone

minor thirteenth

major thirteenth

subminor fourteenth

double octave  fourth partial tone
fifcth parcial tone

sixth partial tone

etc.
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INTERVAL

1.0000

1.708X
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y = 9% (1)
log v
x = logg v = Tog 9 (4)

To find the notation for 194.00 cycles per unit time, substi-
tute 194 for y in equation (4), and receive the answer x = 8.0.
Then 28 = 194, and in this exponential expression for music
the absolute pitch of 194.00 cycles per unit time will always
be written as 8.0 instead of C45b or 194 or Bs} . The oec-
taves above this note would be written as 9.0, X.0, etc., and
the frequencies of these notes would be 368.00, 714.00, etc.

A fifth above X.0 would be written as &, 702X, and a tempered
fifth above X.0 would be X.7000. Thus by adding intervals to

pitches, we get new pitches; all in a unified notation.

To return to intervals for a moment, suppose we have the
ratio 4:3, this is the same as 1.4:1. Calculating our notation
for 1.4 cycles... 0.4£92, and subtracting our notation for 1
cycle... 0.0000, we have .4£92, which expresses both the inter-
val of 4:3, and the absolute pitch of 1,4 cycles. Then inter-
vals and pitches may be thought of as the same, except that
the useful intervals will range from 0.0 to 4.0, and the useful
pitches will range from 4.0 upward; that is, 1f we use a unit
of time equal to the second. More about time later.

The ** just” or “scientific” major scale is composed of the
following ratios: 9:8, 5:4, 4:3, 3:2, 5:3, 13:8, and 2:1,
which complete one octave. The intervals of these ratios
determined from the Interval Chart establish the initial oc-
tave ranging from 0.0 to 1.0. To find the notation for the
eighth octave, add 8.0 to each interval of the initial octave.
Then 1f 1t is necessary to find the frequency directly from
the notation, multiply the notation {(exponent} by log 2, and
take the antilogarithm of the product (see equa. 4). Wicth the
use of the log log scales on the proposed duodecimal slide rule,
a large portion of the curve y = 2% could be laid out in in-
finite graduation with but one setting of the slide, thus mak-
ing the calculations between frequency and notation a matter
of tabulation.

TEMPERAMENT Scales are the result of compromises between mani-
pulation and harmony. If we were to play in only one key,
matters would be simple, but instead we prefer to play in two
tonal modes, and in as many keys as there are notes in the re-
sul ting octave; all of this in accurate just intonation. FEach
key would require new notes, which would require new keys, etc.,
perhaps making the keyboard octave several feet wider than a
grand piano. Obviously temperament is necessary; a subject
which has been discussed since the time of the Greeks, who had
seven tonal modes instead of two.
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The interval of next importance to the octave is the fifth.
If we add a dozen fifths together, we have an interval of
7.0299, which differs from an interval of 7 octaves by an error
of .0299. Then distributing this error evenly among the dozen
fifths, we have the tempered fifth of .7000, differing from
the true fifth by the error .(00299. This then is an argument
for our modern tempered scale, for an interval of ,002Y¥ (two
decimal cents) is scarcely perceptible to the most trained ear.
Equal temperament may be thought of as the reduction of every
interval to the nearest dozenth place. The error colum in
“Just and Tempered Scales” shows that just thirds and sixths
suffer most from temperament. Now add 1.0, 2.0, 3.0, etc., to
each interval in the tempered octave, and you have the notation
for the Duodecimal Equally Tempered Chromatic Scale, a notation
similar to the one which Godjevatz suggested.

JUST AND TEMPERED SCALES

just major |just | minor others tempered| error
1:1 L0000 |1:1 .0000 . 0000 . 0000
14:13 L1142 .1000 | ~.014%

9:8 L2058 [9:8 . 2058 2000 | -. 0058
6:5 . 31%6 .3000 | -.01%6
5: 4 « 344~ <4000 | +.0178+
4:3 L4892 | 4.3 L4592 L5000 | +.002£

7:5 .59%%

nen .6212; .6000 | C,0212

3.2 .702% | 3:2 . 702% . 7000 | ~.002%
8:5 .8179 .8000 | -.0179~

5:3 .8%16 .9000 | +.01%6
9:5 X214 14:9 .9564 X000 | +.0058

13:8 LXX71 L2000 | +,014%
2:1 | 1.0000 |2:1 |1.0000 1.0000 .0000

TI¥E Until now, the customary phrase ‘cycles per second’ has
been carefully substituted by ‘cycles per unit time’. This was
done to emphasize that only one arbitrary assumption was made
(the choice of the octave, all else derived mathematically), and
that the curve y = 2% is independent of time. You may seat your-
self at the piano now, without regard to absolute pitch or time,
and play the diagonals of the “Interval Chart” by taking each
interval to the nearest dozenth place. You may use the tables
“Names and Ratios of Intervals”, “Just and Tempered Scales”,
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“The Curve y = 2°”, and the “Interval Chart” without once
considering a unit of time. Instrument designers, piano
tuners, and physicists are the ones who worry about absolute
pitch. The most important parts of artistic music are the
combinations and sequences of intervals and relative pitches.
The whole theory and notation of intervals is complete with
but one assumption, that of the octave.

Now to apply our notation to absolute pitch, we must make a
second arbitrary assumption and choose a unit of time, thereby
placing the limits of audible sound upon the curve. If we use
a time unit of one second, the interval of 0.04623 (equals
log 308

log 2
notation) column of the “Duodecimal Equally Tempered Chr-matic
Scale” to find the notation for the Equally Tempered Chromatic
Scale of American Standard Pitch A 440 (dec), 308 (duo). Then |
our notation for 308 (A 440) cycles per second would be &, 94623. Q@
However, 1f a time unit other than the second is used, we will

find it necessary to convert from one time system to another.

- 8.9 duo) may be added to each exponent in the x (or

Let there be two systems in our notation, one based on time
unit S, the other based on time unit T, where (T) (K) = S,
K is a known constant factor between one unit time S and one
unit time T.
which is sounded by U cycles per time unit T. Then A
will also be sounded by a frequency of (U)(K) cycles per time

Now the notation for U cycles per T 1is lﬂ&i{, and

wnit S, 1 5
og

the notation for U cycles per S is also %35_%., but the
og

absolute pitches of these two notations are different due to
the difference in the time units. It seems convenient to be
able to convert the notation for absolute patch A 1in time
system T to the notation for the same pitch in time systen
S, by the addition or subtraction of a constant interval.

This is handled by equation (5) >
log U logK _ log (UK. gpere (TK)= S  (5)

log 2 log 2 = log 2

time unit S,
notation for

time urit T, conversion
notation for interval,

absolute comstant the same
pitch distance absolute
between pitch
the two
notations

. . . . 1
Let time unit S be one second, and let time unit T be Fg5p

(duo) part of an hour, call it one threedovic (30 Vics).

Suppose we have an absolute pitch (call it A) N
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There are 2100 seconds in one hour, and 2000 threedovics in

one hour. Therefore T (%%) = S. Then suppose we have 194

cycles per threedovic; our notation for this is 8.0. What
should the notation be for the same pitch (194 cycles per
threedovic) in cycles per second? Substitute the above values
in equation (5). —0.(085 928 is the comversion interval for all

ifeq%fncies. l s (6)
og 184 og 20 - log -
[——“log 5 = 8.0 ] + [ Tog 2 = —0.085 928| = 7.2??33.)

Tt seems better to stick to the second, for a while at least,
because time is already sufficiently dozenal for practical pur-
poses, and to abolish it would raise a psychological barrier

in inquiring minds of laymen. The dozenal quality of time is
one of the few bridges which laymen may cross to duodecimals.
It is a‘foot in the door” so to speak. lowever, the choice
of a unit of time is left to the reader.

However, we should aim for a duodecimal division of the day,
just as we have the duodecimal division of the circle. The
choice of a suitable fraction of the day as the unit of time
for this musical notation is left to the reader.

SUMMARY Someone might suggest that it would be simpler to use

the frequency numbers themselves, rather than all these logar-
ithms and exponents. It would not be for three reasons. First,
musical frequencies are usually handled by multiplication and
division, whereas their logs (on base two calculated with the
aid of base dozen), are added and subtracted. Second, inter-
val distances between frequencies do not remain constant for
one sort of sound sensation {octave, fifth), whereas the
interval distances between the logarithms of the frequencies of
a given ratio remain constant at every level of pitch (see
“The Curve Y = 2*?). Third, the Equally Tempered Chromatic
Scale cannot be expressed in simple frequency numbers, whereas
their logarithms may be expressed with two digit numbers for
the first dozen octaves.

Tt might be well to mention a few advantages of our notation.
It should be understood that this article was designed to
simplify the notation of theoretical music. The musician will
be concerned primarily with Godjevatz's Stave, the two digit
notation of the Duodecimal Equally Tempered Chromatic Scale,
and the tempered intervals .70, .50, 1.0, etc.
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interval 0,30 (“A440" 8. 94623)
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However, those who wish to examine physical music more closely
may do so without discarding the artistic music in ‘‘Notation
Godjevatz” and “Notation More”, and without encountering an
impossible jumble of small letters, capital letters, numbers,
symbols, notes, frequencies, ancient scales, ratios, sharps,
flats, naturals, arbitrary constants, arbitrary divisions,
conversion formulae, ambiguities, arbitrations, pitch standards,
triple primes, subscripts, and Roman numerals. Even with this
lavish abundance of symbols and subtilities, the person who
enters the maze finds himself striving to gain a greater lati-
tude of expression and accuracy. An Exponential Expression
for Music offers this latitude of expression and accuracy with
but one set of duodecimal numbers governed by one theoretical,
simple, basic cencept; y = 2%,

BoOKS Those who wish to strike at the root of theoretical
music, will find Helmholtz’s work of great value.

Helmholtz, Hermann L. F., Sensations of Tone, trans. from the
4th, 1877, German Ed. by Ellis; (4th trans. ed. Longmans
1912).

Mr. Terry’s Duodecimal Arithmetic (Longmans 1938) is an es-
sential tool in the use of duodecimal mathematical functions.
Regardless of the number base, his 9 place book of tables is
more legible, further extended, more modern, better arranged,
more complete, and more convenient than the great majority
of decimal tables. In comparison, nearly all 4, 5, 6, and 7
place decimal tables may be termed mediocre. The Duodeci-
malists have a book of tables which surprisingly few
Decimalists can match.
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COMPLETE SOLUTION
of
THE PROBLEM OF THE SUM OF TWO SQUARES
BY TRIGONOMETRY

by H. C. Robert, Jr.

The complete solution of that interesting theory of

numbers problem A2 + B2 =N - (Pi)(Pé)(P§) . may be found
by a simple trigonometric device. Since the method to be re-
ported here can be derived from the solution obtained through
the expansion of complex numbers by D. Chelini, (see Dickson’s
“History of the Theory of Numbers”, vol. II, pg. 239), no
derivation or proofs will be given. A description of the
method of solution will serve to outline the interesting re-
lationships involved.

IfP is an odd prime of the form 10p + 1 or 10p + 5 (using
dozenal notation,) its representation as the sum of two squares
is said to be unique, that is, P = a? + b?, in one way and one
way only where (a, b) are integers with no common factor
greater than 1. Now every prime, P, which can be so repre-
sented, can also be represented bz one and only one angle, v,
the tangent of which is, tan y = = %% Substituting in
A? *B? =N, P = a? + b2

Now if N = (P,)(P,) and y, end y, are the angles correspond-
ing to P, and P, and their tangents are, tan y, = b tan Y, =4

a’ c’
first we determine the tangent of the sum of the angles, -

. (b/a) * (d/e) _ Bs _ bec + ad
tan (y, +y,) = 1= ?E7a){_d_‘/:c) =27 ae - bd
next we determine the tangent of the difference between the
angles, - ,
_ (b/a) = (d/c) _ "2 _ bec -~ ad
tan (y.{ - yQ) T 1 +a(h a dcc —'A_‘t‘“ az + End

2 2 - A2 2
Now we have AI + Bi =Aj + B2 =N

(P,)(P,), and substituting

we obtain (ac — bd)? + (bc + ad)?

(ac + bd)? + (bc - ad)? =
(a2 + b (c? + d?)

Thus by simply finding the tangents of the sum and differ-
ence of two angles, we have arrived at the familiar four para-
meter identity for two sums of two squares. If one of the two



36 The Duodecimal Bulletin

primes forming our composite, say Pg, is equal to 2, then
d = c¢c = 1, and instead of having two representations for such

a composite, we will have only one. That is, if a®? + b? = Py, )

then (a — b)? + (a + b)? = 2,. The only new factor involved
is in our trigonometric approach, where we find that we multi-
ply by two by adding or subtracting the angle whose tangent is
1 to the angle representing the multiplicand.

We may extend this method to N = (P;)(P9)(P3), by adding or
subtracting the angle, yj3, which represents P3;, to the results
of the case just considered. Let tan vy, :'é}' then we' find, -

_ By bce + ade * acf - bdf

tan (y, +y, + Yy = A; " ace - bde - bcf - adf

_ B9 _ bce + ade - acf + bdf

tan (y, +y, =¥y = A, Tace - bde F bef + adf
B b

_ + - _bce - ade + acf + bdf

tan {y, = vy * y)) = 1= teeFhae ~ ber T adr

B
_ 24 _ bce ~ ade -~ acf ~ bdf
tan (Yj"‘YQ_Y_?) " A, ace ¥ bde + becf ~ adf

Now substituting in, - AZ + Bf = Ag + Bg = Ag + Bg = Af + Bg =N

we obtain,- (bce + ade + acf — bdf)2 + (ace ~ bde — bef ~ adf)?=

= (bce + ade - acf + bdf)? + (ace - bde + bef + adf)?= Ck

= (bce - ade + acf *+ bdf)? + (ace + bde - bef + adf)?=
= (bee - ade -~ acf - bdf)? + (ace + bde + bef - adf) 2=
= (a2 + b2) (c2 + d?) (62 + f?)

And we have a six parameter solution for the identity of four
sets of the sums of two squares. In the same manner we may
extend this solution to composites with four or more factors,
It should be noted that in the foregoing two cases we have used
only half of the total number of variations of sigms in com-
bining the angles, y,, y,, y; etc. This is because the other

possible combinations of signs may be considered as comple-
ments of the combinations we have used. Thus *+ + + 1s the
complement of — — - ; *+ -of ——+; + _+of -+ and
t - - of - ++ . We have used the first in each case. The
complement only changes the sign of B, and upon squaring the
result 1s identical with that obtained through use of the
other combination. For some purposes all combinations may be
required.
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Numerical example of the six parameter solution:
let a=2 b=1 ¢=3 d=2; e=4 {=1; and we obtain
(Base X)

332 4 42 = 322 4 92 - 312 + (-12)2 = 24% + 232 - 1105 = 5.13.17
(Base XIT) ,
992 + 47 = 982 + 92 = 272 + (-10)% = 20% + 1522 = 781 = 5.11.15

So far we have only considered composites made up of the first
powers of primes. We should now consider the representations
of higher powers of primes as the sum of two squares. Let the
angle, y, the tangent of which is tan y =‘%; represent a prime,
P. We determine, -

_ (b/a) * (b/a) _ By 2ab
tan (y +y) = L b TaT = K, 7. 2

_ (b/a) - (b/a) _ B2 _ o
tan (Y = y) = TEE (676 " Ay T 2 4 57

Now substituting in Ai + B? = Ag + Bg = p?

we obtain (a2 - b2 ? + (2ab)? = (a? + b?)? + 0% = P?

This last expression is obviously our familiar two parameter
solution for the Pythagorean Triangle. Nothing new, but the
generators, (a, b), instead of being figures pulled out of the
air have an added dignity. They define the tangent of an angle,
an angle that is exactly half of one of the angles of the tri-
angle which they generate.

A complete investigation of the trigonometric meaning of
these generators is beyond the scope of this introductory paper
but we should note several interesting relationships. If (a,
b) are relatively prime, one even and the other odd, the tri-
angle which they generate will be “primitive”. Obviously all
multiples of this triangle will have the same angles even
though the generators appear to change. Now 1f we multiply
both numerator and denominator of tan y by vk, thus, -

bk
av k

tan y =

and let k = 1, 2, 3, 4,..0.u.. , we obtain all multiples of the
“primitive” triangle. Now we also know that there are two
acute angles to the triangle and if it is generated by the tan-
gent of half of one angle, then what of the other angle? Let
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the two half angles be vy, and y,. We know the sum of the half
angles is half of one right ang%e, that is, is the angle whose
tangent 1s 1, Thus if [

b

tan y, =-, we may write

_ 1 - b/a _ a - b
tan yp =1 1/e . ¥1

and as we have shown earlier, if a? + b? = P, then (a - b)? +
(a+F)2= 2P, and using (a + b, a - b) as generators we ob-
tain the two-multiple of the primitive triangle generated by
(a, b). From this relationship we find that all angles with

rational tangents occur in pairs where tan Ya =-%, with either

a or b even, the other odd, and tan Ys :*%_i_%T with both

numerator and denominator odd.

Thus every angle with a rational tangent is a member of such
a pair, and every such pair determines a primitive Pythagorean
triangle and all of its multiples. Note that the triangle is
actually determined by the pair although only one angle is
used. Before leaving this subject we might also note, since
all trigonometric functions of a Pythagorean triangle are
rational, that, if y is any angle with a rational tangent,
then all functions of (2y) are rational.

Proceeding to the next step, A? + B? = P¥, we determine, -
By _3a% - 33
A, T~ 3

tan (2y + vy) )
a” - Jab )

~

B

")

Ca% 413

2 aj + ahz

It

tan (2y - y)

>

Now substituting in A} + B2 = A + B = N = p?
3ab?)? + (3a%b - b¥)? = (a + ab?)? ,

+ (a’b + b3 2= (a2 + b2)2 = p?

we obtain (a3 -

For a numerical example for this last case, let a - 2; b= 1
and we obtain (Base X),- 112 + 22 = 102 4+ 52 - 5% = 125
or for Base XIJ,- £2+ 92 - X2 +52-5%= %5 T

This method may be continued to obtain two parameter solu-
tions for the partitioning of any power of P into two squares.
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We may state the general solution for A% + B? = P" as follows:

B

Determine all values of tan.Z e

where Z = (r - n) y -~ ny
and y 1is the angle which represents the prime P.
+e.. r, 1f all representations are required,

0, 1, 2,

and n

1A

or N = (r/2) if difference in sign of quantities to be
squared can be ignored,

After obtaining all values of tan Z, we take the sum of the
squares of the numerator and denominator of each value and
this sum forms one member of the identity, which will have as
many members as there are values of tan Z. Care must be taken
not to simplify the values of the tangent since it will be
noted that when n has any value other than zero, the numerator
and denominator can both be divided by P.

The results for P, P% Pg, etc., may be combined exactly as
for composites of the first powers by combining the angles
Z, Z?, Za’ etc. Thus we may solve, for example.- A? + B? =

N = (Pf)(Pg). Let P = a? + b2, tan Y, = %1 and P, = c? +d?,

tan y, =—%, then we find that
A? +B? - A2 ,B2-A2+B2. A +B2=A2B!-
= Al + B2 = (a? + b2)3(c? + d))? is solved by,-
A, = a’c? - 3ab%c? ~ a%d® + 3ab%d’ - Ga’bed + Pcd
B, = 3a’bc? - b¥c? — 3a’bd? + b?d? + 2a’cd - 6ab’cd
A, = a’c? - 3ab%c? - a’d? + 3ab%d? + 6a’bed - 2b'cd
B, = 3a’bc?- b’c? - 3a’bd? + bd? - 2a’cd + 6abZcd
A; = a’c? - 3ab%c? + a’d? - 3ab%d®
B, = Ja%bc? - bic? + 3a’bd? - bid?
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A, = adc? + ab2e? - a%d? - ab2d? - 2a%bed - 2b3cd
B, = a%bc? + bic? - a%d? - b%d? + 2a’cd + 2ab’cd
A, = alc?+ab?c? - a%d? - ab%d? + 2a’bed + 2b3cd.
By = a’bc” + bic? — a’bd? - b¥d? - 2a’cd - 2ab%cd
A, = a'c? + ab%c? + a%d? + ab?d?
B, = a’bec? + bic? + a?hd? + b3d?

For a numerical example, let a = 2; b=1; ¢= 3; d= 2
and we have Base X, -

1422 + 312 = 262 + 1432 =
1102 + (~95)% = 130% + 652 = (5%)(13?) =

(-122)2 + 792
= (~10)2 + 1452

]

= 21125
Base XIT
(-22)2 + 672 = X2 + 977 = 227 + 527 -
= (%) + 1017=922 + (-79? = XA? + 557 = (5%)(11?) =
= 10285

Using methods identical with the foregoing we may also solve
the equation A? — B? = N, where every prime, P, may be repre-
sented by the tan yr=%§, and v,, Y, Y; etc., are combined

as usual for obtaining the hyperbolic tangent of the sum and

differences of quantities. In this problem it is obvious that
P = a? - b?,

The duplication of a complete solution by other methods is of
little or no importance. It may be important that we have
found some interesting relationships between trigonometry and
number theory that have been neglected since the days of the
Babylonians who used tables of Pythagorean Triangles to mea-
sure the trigonometric functions. A thorough investigation of
the trigonometry of number theory may be a fertile field for
extension of our knowledge.
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MATHEMATICAL RECREATIONS
D. M. Brown, Editor

In the last issue we requested suggestions for new kinds of
recreational material. So far the suggestion box is sadly
neglected. However, several errors have been called to our
attention, and we are glad to get some mail.

In the June, 1949 issue of this publication, the answer to
problem 1 should be x = 1, y = 6. In problems 3 and 4, the
last plus sign should be replaced by an equality sign.

Lewis C. Seelbach submitted a‘‘Lazy” solution to the magic
square given on page 15 of the last issue. The solution is

LAZY COMPUTER
0123 456789%%

There is enough information given in the problem as stated to
solve it by use of algebra. We'll be glad to publish an
algebraic solution.

To emphasize the value of various bases in easy solution to
certain types of problems, the following problems are
submitted:

1. The weight problem.

A merchant has a scale for weighing articles consist-
ing of two balanced pans. He desires to be able to weigh
articles weighing from I to 100 lbs. What is the most econom-
1cal set of weights to use? What number-base is involved?

2. The coin problem.

The same merchant is aware that of N coins of the
same denomination, one is spurious, and of different weight
than the others. Using the balance and the coins, how many
weighings must he be permitted to make to determine the follow-
ing: -

a. Which coin is spurious, if he knows that the spur-

ious coin is heavier (or lighter) than the others?

b. Which coin is spurious if he knows only that its
weight is different from the others?

c. Which coin 1s spurious, and which is heavier, the
spurious coin or a good one, if he knows only that
the good and spurious coins have different weights?

d. How many weighings are permrtted if N = 3, 4, 5, 6,

. etc?

e. What number base is most convenient for the problem?
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HALVING

One of the simple ways of dividing things into small parts
is to successively divide them into halves or thirds, again
and again, until the desired fraction is reached. Man has
frequently shown his preference for arranging the scales of
his standards of weight and measure to facilitate this type of
subdivision. Familiar illustrations are the foot with twelve
inches, and the pounds of twelve and sixteen ounces. In
analysing factors of number bases for general use, such divisi-
bility is one of the important criteria. The following table
will afford a visual comparison of the degree of facility of
successive halving on different bases.

Fractionals

Fractions

Base Two Base Eight Base Ten Base Twelve
1/2 .1 4 ) .6
1/4 .01 .2 .25 .3
1/8 .001 .1 125 16
1/16 .000 1 .04 .062 5 .09
1/32 .000 01 .02 .031 25 .046
1/64 .000 001 .01 .015 625 .023
1/128 .000 000 1 .004 .007 812 5 .011 6
1/256 .000 000 01 .002 .003 906 25 .006 9
1/512 .006 000 001 .001 .001 953 125 .003 45

It is surprising that the twelve base should approach the oc-
tic base as closely as it does in the ease of accommodating
this operation. The ten base requires exactly as many places
in each step as does the binary base, - the twelve base half,
and the octic base a third as many places.

NN A A A N A

AN ALPHABETICALCULATION
by Philip Haendiges

A Establishes Justifiably Of
Bright Figures Killing Problematical
Calculator Giving Long Quantities.
Duodecimally  Him Mathematical
Information Notations
Saving With
Time, X-ellent
Result: Understanding  Yardsticks

Values, Zero-iferous.

#®
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PYTHAGOREAN TRIANGLES
and

THEIR INSCRIBED CIRCLES
by H. C. Robert, Jr.

In the Bulletin of October 1948 (Vol. 4, No. 2, page
15), a brief discussion of Pythagorean Triangles with
equal perimeters was presented. An even more neglected
subject is the relationship between Pythagorean Tri-
angles and the circles inscribed in them.

The relationship, A? + B2 = C?, is usually derived
from the generators, (m, n) where A = m? — n?, B = 2mn,
C=m?2 +n? In terms of these generators, the
radius, R, of the circle inscribed in a Pythagorean Tri-
angle is R=n (m - nj.

For R= 1, it is obvious that n = 1 and (m - n) =1, or
m = 2. These generators produce our smallest Pythagorean
Triangle, the 3, 4, 5, triangle of Figure 1. Since the
sides, 3, 4, 5, have no common factor, this triangle 1is
called a “primitive” triangle. Such triangles are pro-
duced if, and only if, the
generators (M, 1) are re-
latively prime and one of
them is even. No other
right triangle with inte-
gral sides can be circum-
scribed about the circle
of unit radius. Obviously
a multiple of the 3, 4,5,
triangle can be circum-
scribed about every circle
with an integral radius.
Note how the foregoing
corresponds exactly with
the characteristics of
unity, that is, the only
integral factor of unity
is unity itself and unity
i1s a factor of any integer.

F/G. 7

Before passing on to other triangles, it is interesting
to note some of the relationships between a Pythagorean
Triangle and its inscribed circle

1. The tangents from the vertices to the inscribed
circle are necessarily integral.
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2. The tangent of half of the vertex angles is rational.
All functions of the whole angles are rational,

3. The excess of the sum cf the two legs of the tri-
angle over the hypotenuse is equal to twice the
radius of the inscribed circle.

4. The area of the triangle is the product of half its
perimeter and the radius of the inscribed circle.
The half-perimeter can also be represented as the
sum of the tangent distances from the three ver-
tices to the inscribed circle.

Now let us investigate the case of the circle with a
radius of 2. We can circumscribe two and only two right
triangles about this circle:

. (3, 2) A=15 B =11

2., (3, 1) A=8, B=6, C=12%
The first of these, the 5, 10, 11, triangle is primitive
and a multiple of this triangle can be circumscribed
about every circle with an even radius. The second tri-
angle is not primitive, being the 2-multiple of the 3,
4, 5, triangle for the unit circle. No other integral
right triangles can be circumscribed about the circle
with radius, R = 2,

I
[y
&
@]

n

Now for R = p, where p is any odd prime, we find that
three and only three triangles may be circumscribed about
such a circle, thus:

1. (p+1, p) A=2p+1, B
2. (p+1, 1) A=p?+2p,B=2p +2, C=p? +32p+2
3. 2V, /D) A=3p,  B=4p, C=8p

The first two triangles are primitive, the third is the
p-multiple of the 3, 4, 5, triangle for the unit circle.
Actually the first of these triangles is primitive not
only for prime values of p but for every integral value
of p, even or odd. It is the well known case for C-B=1,
the solution of which is generally credited to Pythagoras. The
second triangle is also a well known case, that of C-A=2,
and this triangle will be primitive for all odd values of
D whether prime or composite. For cases of even p, this
triangle will be the 2-multiple of the first triangle as
may be verified by substituting 2p for p in the second
triangle and comparing the result with the first triangle
multiplied by 2. Multiples of these two primitive tri-
angles for each prime, (or odd composite) can be circum-
scribed about every circle, the radius of which is a

multiple of p.

It

p?+2p, C=2p2+2p+1

I
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1f 3 =ab, where a and b are two distinct odd primes
greater than I, we get the three same triangles, two
primitive and one the p-multiple of 3, 4, 5, as given
previously for a prime radius. It is only necessary to
substitute p = ab in the forms given. We also get the
a~-multiples of the two primitive triangles belonging to
the prime, b, thus: A = 2ab +a, B = 2ab? + 2ab,
C=2ab? + 2ab +a, and A = ab? + 2ab, B = 2ab + 2q,
C=ab? + 2ab + 20 and we get the b-multiples of the two
primitive triangles belonging to the prime, @, thus:

A=2ab +b, B= 2a?b + 2ab, C=2a% + 2ab + b

and A=a?b +2ab, B=2ab +.2b, C = a?b + 2ab + 2b
and in addition we get two new primitive triangles, thus:
(a+b o) A=2a +b? B=2"+2b C= 22+ 2b+0b>
(a+b, b) A=a®+2ab, B=2ab+2b% C=a’+ 2ab+ 2b?
Thus for an odd composite with two distinct factors, we
have the same three triangles that would characterize a
prime, and in addition we have six other triangles, four
non-primitive and two primitive. It is obvious from the
distribution of the two factors in the several members
of these six additional triangles, that if any one of
these triangles is known, we can find the factors of the
radius R = ab. Unfortunately, we know of no way of find-
ing any one of these triangles unless we first know the
factors of R. Otherwise we would have a solution to the
eternal problem of factorisation.

When the radius, R, i1s even, there are two or more
primitive triangles except when R is a power of 2, for
which case there is only one primitive triangle. The
number of non-primitive triangles is a rather complicated
function of the factors of the radius, R, but the number
of primitive Pythagorean Triangles, PT, which can be cir-
cumscribed about any given radius, R, can be simply stated,
thus: For R = 2“f§f§f§ <o [7 where [, [y, «.. [,
are n distinct odd primes greater than I, the number of
primitive triangles, PT, is: PT=2". Thus when R = I or
R = 2%, we will have n = 0 and PT = 2° = 1 and when
R = p, D being an odd prime, n = I and PT = 2, as has
been stated previously.

Since there 1is at least one, and generally two or more
primitive Pythagorean Triangles for every integral value
of R, it appears that there are many more such triangles
than there are numbers. For example, there are 278 primi-
tive Pythagorean Triangles for which the radius of the
inscribed circles does not exceed 100.
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All Pythagorean Triangles which may be circumscribed
about a circle of radius, R, may be found from the frac-
torisations of R = k.a,b, = k,a,b, = k,a,b, = k a b,
where ki’ k?, etc., either equal I, or are odd numbers
without square factors., There will be as many circum-
scribed triangles as there are different factorisations
including reversals of order of the factors @ and b. The
triangles will be primitive if, and only if, » = 1 and @
and D are relatively prime and b is odd. The generators
from which the sides may be found are obtained from these
factorisations of R by means of: ,

m=(a+b) Vi and n=a vk
The resemblance between the foregoing and the method of
handling perimeter problems given in the Bulletin of
October 1948 is obviocus.

This brief discussion does little more than scratch the
surface of the neglected subject of the relationships be-
tween Pythagorean Triangles, the circles inscribed in
them, the tangent distances and other items that are in-
troduced when we consider the inscribed circles. Further
investigation of the subject may be both interesting and
profitable. A table giving all triangles with a radius
of less than 16 follows, arranged according to radius and
perimeter. Many obvious and unexpected relationships can
be noted in this tabulation.

SOLUTIONS OF PYTHAGOREAN TRIANGLES
ARRANGED ACCORDING TO RADII OF THE INSCRIBED CIRCLES

Radius Generators A B C Perimeter
1 2, 1 (D) 3 4 5 10
2 3, 2 (p) 5 10 11 26

3, 1 8 6 X 20

3 4y, 3 (p) 7 20 21 48
4y 1 (p) 13 8 15 34

273 /3 9 10 13 30

4 5 4 (p) 9 34 35 76
5, 1 20 % 22 50

4, 2 10 14 18 40

5 6, 5 (p) g 50 51 S0
6, 1 {(p) 28 10 31 70

2v5, V5 13 18 21 50

-:ﬂ‘

Radius

6

10

11
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Generators A
7, 6  (p) 1
7, 1 40
3V3, 2V3 13
5, 38 14
3V3, V3 20
5, 2 (p) 19
8 7 (p) 13
8, 1 (p) 53
27, V7 19
9, 8 (p) 15
9, 1 88
6, 4 18
6, 2 28
X 9 (p) 17
% 1 (p) 83
4V 3, 3/3 19
4v'3, V3 39
8, 3 23
2 X (p) 19
g, 1 20
7, 5 20
3V5, 2V5 21
7, 2 (p) 39
3V5, V5 34
10, £ (p) 18
10, 1 (p) 55
2ve, Ve 29
11, 10 (p) 21
11, 1 120
5V 3, 4V3 23
8, 6 24
5V3, V3 60
8, 2 50
7, 4 (p) 29
4V3, 2V3 30
7, 3 34
12, 11 (p) 23
12, 1 (p) 143
2v'ii1, Vil 33

B

70
12
30
26
18
18

S4
14
24

100
16
40
20

130
18
60
2
30

164
1X
5%
50
24
26

1D
2
38

220
22
20
80
26
28
48
40
36

264
24
44

C

71
42
33

26
25
95
55
28
101

34

131
85
63
43
39

165

62
55
45
42
1X1
101
47

221
122

84
66

55

4%

265
145
55

45
Perimeter
132
94
76
68

60
5%

180
100
70

216
130
X0
80

278
164
120
20
90

326
120
120
106
/sl
X0
3X0
220
30

462
264
126
168
130
114
10%
100

8
530
25D
110
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Radius Generators A B C Perimeter

12 13, 12 (p) 25 250 21 606
18, 1 168 26 16% 340

9, 7 28 X6 o 200

3V7, 2vV7 28 70 77 156

9, 2 (p) 65 30 71 148

V7, V7 48 36 5% 120

18 14, 13 (p) 27 8340 341 6X8
14, 1 (p) 193 28 195 394

6vV'3, 5V3 29 130 133 290

4V'5, 3V5 2¢ X9 x5 184

6vV3, V3 89 30 93 190

8 5 (p) 33 68 75 154

4V'5, V5 63 34 71 148

2v'13, Vi3 39 50 83 130

8, 3 (p) 47 40 61 128

14 15, 14 (p) 29 394 395 796
15, 1 200 o 202 40

% 8 30 114 118 260

X 2 80 34 88 180

8, 4 40 54 68 140

15 16, 15 (p) 28 430 431 8%
18, 1 (p) 22¢ 0 231 490

2v'15, Vis 43 58 71 150

NOTE: (D) following the generators indicates a Priaitive Triangle.

~ e A A N N N

EXTRA COPIES

Many of those interested in duodecimals sedulously
maintain complete files of the Duodecimal Bulletin. This
is a practice which we wish to encourage. These esteemed
people are sometimes confronted with the need for cutting
out some table or article from the Bulletin for special
use. On request, we will gladly supply extra copies, so
that they can clip the needed material, yet maintain
their Bulletin files in proper condition.

i
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THE MAIL BAG

Sons!  Sons! Sons! Everybody is having boy babies. If we
don’t be getting some duodecimal daughters pretty soon, what
are we going to do about double-duocdecimal grandchildren?

Mr. and Mrs. Jamison Handy, Jr., announce the debut of Galen
William Handy. Two of our Canadian femilies, Mr. and Mrs. Leon
L’Heureux, and Mr. and Mrs. Edwin Bobyn jubilate over sons. It
is the second son for the L'Heureuses. Paul and Cam Adams (the
Mad Adamses) have a son. Bob and Mary Lloyd have their third
son. Ain’t nobody got a daughter? Something will have to be
done about this!

NN N N N A

We are delighted to present Trenchard More’s article on An
Exponential Expression for Music. This scholarly paper supple-
ments beautifully the earlier work of Velizar Godjevatz on the
New Musical Notation which appeared in the Bulletin for Oct-
ober, 1948.

Not only is Trenchard More to be congratulated on a fine
piece of work, but we are to be congratulated on having among
the rising generation so capable an advocate of duodecimals.

We expect to hear the reverberations of the note these pioneers
have struck.

~N A N S me e e

We are eager to find among our members a source for a paper
on a duodecimal color notation, The Munsell decimal color no-
tation is important commercially, but it suffers from some
distortion in being compressed within the decimal limitation.

A ducdecimal notation would be a definite refinement, and would
require but minor modification of the Munsell System.

~ AN AN N A N A

Louis Paul d’Autremont’s article on the Duodecimal Perpetual
Calendar has had a fine reception. In the Havana daily Infor-
macion, Juan de Dios Tejada commented favorably and at consid-
erable length on the d’Autremont proposal in his column, La
Marcha de la Technica.

NN AR N AN

The Board of Directors of the Society has recently author-
ized public announcement of our willingness to furnish without
charge sets of introductory duodecimal literature to the pupils
of mathematics classes of teachers colleges, to the extent
that our supply permits. Sets will camprise a copy of the
Duodecimal Bulletin, a copy of the reprint of the Excursion in
Numbers, by F. Emerson Andrews, and a copy of the Society’s
folder.

: Ye Ed.
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