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For many years we have been longing for the Duodecimal. Ever since we first came
to know of his beauty, his virtues and his power, we have been yearning to see him
established in his rightful place, and to see his more successful but less deserving rival,

the Decimal, driven out. We still remember the backaches, the headaches, the heartaches,
and yet other aches, which we have owed, directly or indirectly, to the enthroned tyrant, and
we have hoped to see the world, one day, set free from him. Must we ever hope in vain?
Efforts have indeed been made, from time to time, to start this revolution; but obstacles,
put in the way by those who should have known better, selfish indifference on the part of
those who could have accomplished much, but who would not, timidity on the part of those
who have never learned to dare, have caused the great work to be left undone. Archimedes is
credited with the saying: “Give me a lever long enough and I will move the world.” But it is
a pretty hard world to move, and we would bespeak a goodly number of levers, long and
strong, with plenty of power at the other end.

To drop unprofitable metaphors, we would say, in plain terms, that we deem it high time
to throw aside our decimal system of numeration and to adopt, in its stead, the duodecimal.
It is important for our own sakes, but especially, and very much more important for the sake
of posterity, that this be done, and that it be done quickly; for, unless it be done soon, it will
ere long be too late.

We cannot join battle immediately, however, but must clear the way by a little previous
reconnoitering, taking, as it were, a general view of the whole field and of the enemies to
be encountered; we must also try to dispose, sweetly if we can but strongly anyhow, of any
lesser foes who might be a hindrance to the main action. To do this we will have to recall
to the minds of our readers, certain elementary ideas concerning arithmetical notation in
general, and a few of the systems of notation in particular.

Notation.

Notation in general may be defined as the art of expressing numbers by means of written
symbols; while a system of notation is a particular method of doing this.

The Unal System.

In order to express a number, say five, we may put down five separate marks of any kind,
as 1 1 1 1 1. In that case, each mark would stand for one and nothing else. For want of a
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better name we have ventured to coin a word for the time being, and to call this method
the unal system. Whether any people ever employed it for general business transactions or
not, we are unaware. It is however in use even now, though only to a very limited extent,
in keeping tally when the things to be recorded come along one by one, as in marking the
points in certain games, or the number of barrels, boxes, etc., swung into the hold of a ship.
It is very simple in this respect, that only one character, figure, symbol, digit (call it what
you will) is required. But no people who had much recording to do could have long stuck to
such a method. Its grave defect is that, for any but the smallest numbers, the results become
unwieldly.

Let any one undertake, for the sake of experiment, to set down a million by this method.
On an average he could make conveniently about two marks per second. At this rate he would
have to work steadily eight hours a day for more than seventeen days; and, allowing, what
is pretty liberal, 2500 marks to the page, he would cover 400 pages. When done, he could
read it, in the unal way, only by repeating one, one, one, etc., till he had reached the million,
while the victim who had been forced to listen would not have the faintest scintillation of an
idea as to what the whole thing meant.

Or, suppose a professor of astronomy, in the good old, simple, unal days, had, by some
means or other, come to the knowledge that the sun is distant from the earth ninety-odd
millions of miles, and that he wishes to communicate that scrap of information to his pupils.
To get it on the blackboard would take, under the conditions stated above, between four and
five years, and if his blackboard were four feet wide, it would have to be more than a mile
long.

We can hardly conceive of anything more potent than such a system of numbers as a
means of stunting the human mind. Nothing that we know of could even pretend to compete
with it, except perhaps our present, chaotic system of English spelling; and even that, bad
as it is, would be left far behind; though, being the sole (soul, sowl, sol, soughl, soal, psoal,
psoughl, psol, psoul, psowl .. . . ) competitor, it might well be adjudged a second prize. If the
world had been restricted to the unal system, it could scarcely have been civilized, at least
arithmetically.

The Binal System.

Let us now pass to the consideration of some other possible systems. The first step we make
out of the quagmire of the unal system (which can hardly be called a system at all), is into
the binal system. Here we make use of two marks, or symbols (0 and 1), the former of which
(the 0), when standing alone, represents no value whatever, the second of which (the 1), when
standing alone, means one. But just here, the influence of system comes in; for, the value
of the symbol 1, when used in conjunction with other 1’s or with other 0’s, depends on its
place in the line; and the influence of the 0 consists in keeping the 1’s in their proper places.
Now the pith of the binal system is in this, that our symbol 1, when moved one space to the
left of its primal position, has twice its fundamental value; when moved another space, twice
that; and so on, indefinitely. Very poetical, you may say, but somewhat obscure. Let us try
to illuminate it a little.

To do so we will take a line of dots, as . . . . which represent nothing except positions.
Now, if our symbol 1, is placed on the right-hand dot, thus . . . 1, it means simply one. If
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placed on the next dot ( . . 1 . ) it will have a value of twice one, or what we call two. If
placed on the next dot ( . 1 . . ), it will be twice two, or what we call four ; and if placed
on the next ( 1 . . . ), it will be eight; and so on, increasing in a two-fold ratio by every
move from the right towards the left. Strictly speaking we have no right to use the word
two, because that supposes we have a symbol whose name is two, whereas, the number two
is not expressed in this system by a symbol, but by a combination, and the name of the
combination should be drawn from the components. But it matters little, as we do not intend
to set the binal system up for use, and our common decimal system even, is not scientifically
correct on this point.

The ratio (two), made use of in this system, is the radix, the base of the system. In what
precedes we may notice two things: first, that the dots on the left of the 1 are serving no
useful purpose, and may be omitted; second, that the mean, miserable, little dots might be
mistaken for fly-specks, or vice versa, and that might be the cause of serious errors. So we
round each of them out into a full o, big enough to command respect, and to keep the little
ones in their proper places. In this system therefore, the combination 10 (which should be
read, one-naught) means not ten but two. So 1 1 (one-one) means two and one, or our three;
1 0 1 means five; 1 1 1 1 means eight and four and two and one, or fifteen.

For the sake of comparison, and as a starting-point for those who wish to investigate this
matter further, we give, later on, a table showing the way of expressing numbers from zero to
a hundred in several systems. We remark in the meantime, however, that the binal system
possesses the advantage over the unal of greater conciseness. To express a million in the
unal system would require, as we have seen, a million marks, while in the binal system it is
accomplished by the use of only twenty. This is better, but it is still too bulky for convenient
handling.

In this system the usual operations of arithmetic would, however, be ideally easy, so much
so that it has been suggested that it might be worth the while to translate the numbers from
our decimal system to the binal, perform the required operations, and then translate back
again. We are afraid that the easiness of the work would hardly compensate for its extra
length. The rules for translating from the decimal system to any other, and vice versa, will
be given below.

The Ternal System.

In the binal system, just described, we had need of two symbols; in the ternal we will need
three. Let them be 0, 1, 2, and let them have the intrinsic values of zero, one, two, respectively.
The essence of the ternal system is in this, that the value of 1 or 2 is increased three-fold at
each removal through one space towards the left; or, what is saying the same thing, that the
base of the system is three. The value of the combination 10 (one-naught) is therefore three;
of 20 (two-naught), six; of 100 (one-naught-naught), nine; of 212 (two-one-two), twenty-three.
A million would require thirteen places to be filled with the proper combination of zeros,
ones and twos. This is again an improvement, but we hanker after something better yet.

The Quaternal System, etc.

It ought to be beginning to dawn on us by this time that we may take any whole number
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whatever as a base, and construct the corresponding system on the lines indicated above.
The number of symbols needed in each case will be equal to the number expressed by the
base; thus, using the symbols with which we are already familiar, we will have, for

The unal system, the symbol 1.
The binal system, 0, 1 (two symbols).
The ternal system, 0, 1, 2 (three symbols).
The quaternal system, 0, 1, 2, 3 (four symbols).
The quinqual system, 0, 1, 2, 3, 4, etc.
The sextal system, 0, 1, 2, 3, 4, 5.
The septimal system, 0, 1, 2, 3, 4, 5, 6.
The octaval system, 0, 1, 2, 3, 4, 5, 6, 7.
The nonal system, 0, 1, 2, 3, 4, 5, 6, 7, 8.
The decimal system, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
The undecimal system, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, t.
The duodecimal system, 0, 1. 2, 3, 4, 5, 6, 7, 8, 9, t, l.
Our present usage allows us only ten symbols, so that for the undecimal system we need

an extra symbol. Its name is ten, so that provisionally, until a new sign has been agreed on,
we take the initial of ten, i.e., t. For the duodecimal system we need yet another; its name
is eleven; so we take the l, not the e, because that e is too small to stand up in a row of
numerical symbols, and besides l will stand very well for ’leven. We might go on indefinitely,
but since we have set our heart on the duodecimal system, it will be correct to stop there.

It is clear that the greater the value of the number used as a base, the more concise the
expression, for any number larger than that base, will tend to be. As an illustration of this
fact, we will translate a million into its equivalent expression in several of the systems. We
need:

For the unal, a million separate digits.
For the binal, twenty digits, viz., 11110100001001000000.
For the ternal, thirteen digits, viz., 1212210202001.
For the quaternal, ten digits, viz., 3310021000.
For the quinqual, nine digits, viz., 224000000.
For the sextal, eight digits, viz., 33233344.
For the septimal, eight digits, viz., 11333311.
For the octaval, seven digits, viz., 3641100.
For the nonal, seven digits, viz., 1783661.
For the decimal, seven digits, viz., 1000000.
For the undecimal, six digits, viz., 623351.
For the duodecimal, six digits, viz., 402854.
For the centesimal, four digits, viz., 1000.
In the next table we may see at a glance the relation between the first twelve systems,

through all the numbers up to one hundred inclusively. They look formidable enough, but it
is only in looks, and need merely to be pondered on, in the light of what we have already
seen, in order to be appreciated. There are doubtless many readers of the Quarterly who
will just revel among the beauties of these seemingly prosaic columns of figures.

The first vertical row consists merely of our common numbers in regular order, such as
we have been fed on from childhood up, or down. They have been placed there as a guide
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to keep us straight, but are found again in their proper place further to the right. Reading
horizontally across the page, each number means exactly the same thing, but as a general
thing the names would be different.

Equivalent Expression for One Hundred Numbers
in Various Systems
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(0) 0 0 0 0 0 0 0 0 0 0 0 0
(1) 1 1 1 1 1 1 1 1 1 1 1 1
(2) 11 10 2 2 2 2 2 2 2 2 2 2
(3) 111 11 10 3 3 3 3 3 3 3 3 3
(4) 1111 100 11 10 4 4 4 4 4 4 4 4
(5) 11111 101 12 11 10 5 5 5 5 5 5 5
(6) 111111 110 20 12 11 10 6 6 6 6 6 6
(7) etc. 111 21 13 12 11 10 7 7 7 7 7
(8) etc. 1000 22 20 13 12 11 10 8 8 8 8
(9) ” 1001 100 21 14 13 12 11 10 9 9 9
(10) 1010 101 22 20 14 13 12 11 10 t t
(11) 1011 102 23 21 15 14 13 12 11 10 l
(12) 1100 110 30 22 20 15 14 13 12 11 10
(13) 1101 111 31 23 21 16 15 14 13 12 11
(14) 1110 112 32 24 22 20 16 15 14 13 12
(15) 1111 120 33 30 23 21 17 16 15 14 13
(16) 10000 121 100 31 24 22 20 17 16 15 14
(17) 10001 122 101 32 25 23 21 18 17 16 15
(18) 10010 200 102 33 30 24 22 20 18 17 16
(19) 10011 201 103 34 31 25 23 21 19 18 17
(20) 10100 202 110 40 32 26 24 22 20 19 18
(21) 10101 210 111 41 33 30 25 23 21 1t 19
(22) 10110 211 112 42 34 31 26 24 22 20 1t
(23) 10111 212 113 43 35 32 27 25 23 21 1l
(24) 11000 220 120 44 40 33 30 26 24 22 20
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Equivalent Expression—continued
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(25) 11001 221 121 100 41 34 31 27 25 23 21
(26) 11010 222 122 101 42 35 32 28 26 24 22
(27) 11011 1000 123 102 43 36 33 30 27 25 23
(28) 11100 1001 130 103 44 40 34 31 28 26 24
(29) 11101 1002 131 104 45 41 35 32 29 27 25
(30) 11110 1010 132 110 50 42 36 33 30 28 26
(31) 11111 1011 133 111 51 43 37 34 31 29 27
(32) 100000 1012 200 112 52 44 40 35 32 2t 28
(33) 100001 1020 201 113 53 45 41 36 33 30 29
(34) 100010 1021 202 114 54 46 42 37 34 31 2t
(35) 100011 1022 203 120 55 50 43 38 35 32 2l
(36) 100100 1100 210 121 100 51 44 40 36 33 30
(37) 100101 1101 211 122 101 52 45 41 37 34 31
(38) 100110 1102 212 123 102 53 46 42 38 35 32
(39) 100111 1110 213 124 103 54 47 43 39 36 33
(40) 101000 1111 220 130 104 55 50 44 40 37 34
(41) 101001 1112 221 131 105 56 51 45 41 38 35
(42) 101010 1120 222 132 110 60 52 46 42 39 36
(43) 101011 1121 223 133 111 61 53 47 43 3t 37
(44) 101100 1122 230 134 112 62 54 48 44 40 38
(45) 101101 1200 231 140 113 63 55 50 45 41 39
(46) 101110 1201 232 141 114 64 56 51 46 42 3t
(47) 101111 1202 233 142 115 65 57 52 47 43 3l
(48) 110000 1210 300 143 120 66 60 53 48 44 40
(49) 110001 1211 301 144 121 100 61 54 49 45 41
(50) 110010 1212 302 200 122 101 62 55 50 46 42
(51) 110011 1220 303 201 123 102 63 56 51 47 43
(52) 110100 1221 310 202 124 103 64 57 52 48 44
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Equivalent Expression—continued
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(53) 110101 1222 311 203 125 104 65 58 53 49 45
(54) 110110 2000 312 204 130 105 66 60 54 4t 46
(55) 110111 2001 313 210 131 106 67 61 55 50 47
(56) 111000 2002 320 211 132 110 70 62 56 51 48
(57) 111001 2010 321 212 133 111 71 63 57 52 49
(58) 111010 2011 322 213 134 112 72 64 58 53 4t
(59) 111011 2012 323 214 135 113 73 65 59 54 4l
(60) 111100 2020 330 220 140 114 74 66 60 55 50
(61) 111101 2021 331 221 141 115 75 67 61 56 51
(62) 111110 2022 332 222 142 116 76 68 62 57 52
(63) 111111 2100 333 223 143 120 77 70 63 58 53
(64) 1000000 2101 1000 224 144 121 100 71 64 59 54
(65) 1000001 2102 1001 230 145 122 101 72 65 5t 55
(66) 1000010 2110 1002 231 150 123 102 73 66 60 56
(67) 1000011 2111 1003 232 151 124 103 74 67 61 57
(68) 1000100 2112 1010 233 152 125 104 75 68 62 58
(69) 1000101 2120 1011 234 153 126 105 76 69 63 59
(70) 1000110 2121 1012 240 154 130 106 77 70 64 5t
(71) 1000111 2122 1013 241 155 131 107 78 71 65 5l
(72) 1001000 2200 1020 242 200 132 110 80 72 66 60
(73) 1001001 2201 1021 243 201 133 111 81 73 67 61
(74) 1001010 2202 1022 244 202 134 112 82 74 68 62
(75) 1001011 2210 1023 300 203 135 113 83 75 69 63
(76) 1001100 2211 1030 301 204 136 114 84 76 6t 64
(77) 1001101 2212 1031 302 205 140 115 85 77 70 65
(78) 1001110 2220 1032 303 210 141 116 86 78 71 66
(79) 1001111 2221 1033 304 211 142 117 87 79 72 67
(80) 1010000 2222 1100 310 212 143 120 88 80 73 68
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Equivalent Expression—continued
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(81) 1010001 10000 1101 311 213 144 121 100 81 74 69
(82) 1010010 10001 1102 312 214 145 122 101 82 75 6t
(83) 1010011 10002 1103 313 215 146 123 102 83 76 6l
(84) 1010100 10010 1110 314 220 150 124 103 84 77 70
(85) 1010101 10011 1111 320 221 151 125 104 85 78 71
(86) 1010110 10012 1112 321 222 152 126 105 86 79 72
(87) 1010111 10020 1113 322 223 153 127 106 87 7t 73
(88) 1011000 10021 1120 323 224 154 130 107 88 80 74
(89) 1011001 10022 1121 324 225 155 131 108 89 81 75
(90) 1011010 10100 1122 330 230 156 132 110 90 82 76
(91) 1011011 10101 1123 331 231 160 133 111 91 83 77
(92) 1011100 10102 1130 332 232 161 134 112 92 84 78
(93) 1011101 10110 1131 333 233 162 135 113 93 85 79
(94) 1011110 10111 1132 334 234 163 136 114 94 86 7t
(95) 1011111 10112 1133 340 235 164 137 115 95 87 7l
(96) 1100000 10120 1200 341 240 165 140 116 96 88 80
(97) 1100001 10121 1201 342 241 166 141 117 97 89 81
(98) 1100010 10122 1202 343 242 200 142 118 98 8t 82
(99) 1100011 10200 1203 344 243 201 143 120 99 90 83
(100) 1100100 10201 1210 400 244 202 144 121 100 91 84

The table might, of course, be indefinitely extended, but we have given enough, we think,
to show how tables of any length and width might be constructed. A few remarks, however,
will help to make matters still clearer.

We begin all the systems from zero, or nothing, because that is the law for the beginning
of all created things, and also because it makes the grouping more symmetrical. The natural
turning-point in the grouping is where the number of symbols of the combination changes, as
we have indicated by a dash at the end of each group. It will be noticed also that each symbol,
taken singly, has the same value in all the systems in which it may be used that it has in our
decimal system. Thus, the intrinsic value of the symbol 7 is seven always; but its systematic
value depends, as we have seen, on its place in the line. To understand more clearly how the
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foregoing table was built up. and how it might be extended to any dimensions, let us take
one of the systems and follow it through. Any one you please. The septimal, you say? Well,
here goes.

In this system we have seven symbols (0 to 6 inclusively). We write them down, as in the
table, in their regular order, till we have used them up. We can go no further with single
symbols, for we have no more; hence, we must resort to combinations. We begin over again,
therefore, by taking the first symbol which has a value of its own, viz., the 1, and move it
one space to the left, and keep it there by means of our stop-gap, the 0, thus getting the
combination 10 (one-naught), which is the first systematic number in this system. Its value
is, of course, seven. We then go on by replacing the 0 by each of the other symbols in regular
order, and thus get 10, 11, 12, etc., to 16, which last combination means seven and six, i.e.,
what we call thirteen. Here again we are stopped for want of symbols, and so we resort to
other combinations by taking the next symbol, the 2, and putting it in the second rank, just
as we did with the 1. This gives us the combination 20, meaning evidently (2 × 7) + 0 =
fourteen in our parlance. Then 21, which is (2 × 7) + 1, will be fifteen; 23 = seventeen; 26 =
twenty. Another start will give us 30 = twenty-one, etc., to 36 = twenty-seven. When we
have reached 66, i.e., (6 × 7) + 6 = forty-eight, we are at the end of a group, and can do
no more with only two symbols. So we will start afresh with our 1, and move it a second
time to the left, thus getting 100. It is evident that this means (1 × 7 × 7) + 0 = forty-nine.
Then all is plain sailing again (as 101 = fifty; 106 = fifty-five) till we reach 666, i.e., (6 × 7
× 7) + (6 × 7) + 6 = three hundred and forty-two. Then our 1 makes another move, and
we have 1000 or (1 × 7 × 7 × 7) + 0 = three hundred and forty-three. Enough. The same
method is applicable to any and every system, the only difference between them being in the
base, and in the consequent number of symbols employed.

But we are so accustomed to the use of the decimal system, that, at first, it is difficult to
think in any other; and, just as a person who is not quite familiar with a foreign language,
finds it necessary to think in his own and then translate, so in dealing with these unfamiliar
systems, it is necessary to know how to translate. To do this we might go back to the
beginning (0) and build up the system to the desired spot. This would, in the case of large
numbers, be very laborious, but we may arrive at the result, by a shorter cut, in using the
following Rules:

1. To translate from the decimal to any other system.
Divide the given number by the base of the other system, and, on a line with the quotient,

set down the remainder (even if it be a 0)—divide the quotient so obtained by the base again,
for a new quotient and remainder, and so continue, until the last quotient is less than the
base. This last quotient, with the several remainders in their backward order, will be the
number required.

Example.—Translate 237,985 of our decimal system into the equivalent expression of the
ternal system.
3|237985|
3|79328|1
3|26422|2
3|8814|0
3|2938|0
3|979|1
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3|326|1
3|108|2
3|36|0
3|12|0
3|4|0
3|1|1 The required expression is therefore 110002110021.

2. To translate from any other system into the decimal.
Multiply the left-hand figure of the given number by the base of that other system, and

add in the next figure at the right. Multiply the sum so obtained by the base again, and add
in, as before, the next right-hand figure. Continue the successive multiplications until the last
right-hand figure has been added. The last sum will be the given number expressed in the
decimal system.

Example.—Translate 43021 of the quinqual system into its equivalent in the decimal.

43021
5
20 + 3 = 23

5
115 + 0 = 115

5
575 + 2 = 577

5
2885 + 1 = 2886 Answer.

Arithmetical Operations.

All the operations of arithmetic can be readily performed in any of the systems, and a little
practice, with a clear head, would soon render one fairly an adept. We will give a few
examples, say in the quaternal system.

Addition.

123
311
232
312

+ 131
3101

This, at first sight, looks crooked enough, but when we remember that one remove
towards the left means a fourfold (not a tenfold) increase, it straightens itself out
immediately. The 312 sum of the first column (at the right) is nine, and that
is (2 × 4) + 1, or two to be carried to the column of the fours, and one left for
the column of units. The second column, including the “carried” two, adds up to
twelve, that is, three to be carried to the column of sixteens, and zero left over for

the column of fours. Finally, the “carried” three being included, the third column foots up to
thirteen, = (3 × 4) + 1, that is, three for the fourth rank, and one left over for the third; so
we have 3101 as a result.

∗(Note.—In practice the adding will be done mentally.) It can be demonstrated that these Rules are
exact for whole numbers, but the demonstration would require more space than we can afford. Fractions
require a somewhat different treatment.
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Subtraction.

331032
− 120233

210133

Here again a little of the quaternal spirit is required to help us see how 3 from
2 leaves 3. The secret, a very open one, is, that the one (1) which we “borrow”
from the next left-hand rank is really four (not ten), which being added to the 2

makes six, from which we take 3, and so have 3 for a remainder. The same idea is to be kept
in mind every time we “borrow” or “carry.”

Multiplication.

3012
302

12030
21102

2122230

Don’t forget that every four, in one rank, is to be carried as a unit to the next,
and all will be well.

Division.

130)121110)312
1122

231
132
330
330

If a decimal boy were to bring that as an example of division, we should
suspect a leak somewhere in the brain; if a quaternal boy did not bring
that result, we would mildly inquire “Why not?” What we have to say
about fractions will come a little later.

Numeration as it was Among the Ancients.

Now that we have glanced at a few of the possible systems of notation, the question that may
suggest itself is: What is the use of it all? Why lead us through a labyrinth of possible systems
when we have an actual one in daily use? Kind, patient reader, please allow us to answer
your question by another. Suppose you had just emigrated to some other planet inhabited by
rational beings like ourselves, but who as yet were totally unacquainted with any arithmetic,
though just beginning to feel the need of the science of numbers. Suppose moreover you had
been called thither for the express purpose of being their teacher in that branch. Knowing
all you know now, which of the possible systems would you adopt in starting the arithmetic
of your new world? A wrong choice here would entail on you many a left-handed blessing
for all time to come. Reflect now. Were you to adopt the unal system, the æons of time
would be too short to figure up your market bills. The binal, as we shall see, would have
to be condemned on account of its interminable fractions. The ternal and nonal would be
even worse in this respect, and the quaternal and octaval very little better, although the
expressions would be more compact. The quinqual, septimal and undecimal are simply horrid
in this matter of interminate fractions. What then? Why, try the next, the decimal system.
Unhappily for us our ancestors did so, or rather they stopped, unhappily, without looking
farther. How came they to do so? It is hard to tell, but it is believed that our decimal system
owes its origin to the ten fingers of the human hands. We have all counted on our fingers
more or less, and the very word “digit,” used both for “finger” and for “numerical symbol,”
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seems to confirm this belief. However this may be, it is about certain that the forms of our
symbols are derived from the Sanskrit, although other derivations have been suggested, and
that the decimal system, as such, came from the Hindoos to the Arabs, by whom it was
introduced into Europe not earlier than the eleventh century.

Among the ancient Hebrews and Greeks the decimal system was indeed in use, but in
a very imperfect form, and what knowledge they had of it, was probably acquired through
their intercourse with India. For symbols they relied on the letters of their alphabets; but as
the Hebrew alphabet contained only twenty-two letters, five more symbols were invented, in
order to make three groups of nine each. For the same reason the Greeks added three new
symbols. The Hebrews put these new symbols at the end of their alphabet; the Greeks put
one at the sixth place, one at the eighteenth, and the third at the end. Given now these
twenty-seven symbols, the method of using them was the same with both nations. The first
nine letters were used for our 1, 2, 3, 4, 5, 6, 7, 8, 9; the second nine for our 10, 20, 30, 40,
50, 60, 70, 80, 90; the third nine for 100, 200, 300, 400, 500, 600, 700, 800, 900. In Greek
usage an accent was placed over a letter when used as a numeral; when placed below the
letter it increased its value a thousand times. M, used as a prefix, increased the value of a
numeral ten-thousand times. Combinations were formed by placing these numeral letters in
juxtaposition. For example, to indicate two-hundred and seventy-nine, a Greek would write
σòθ, as if we were to write 200, 70, 9. Fractions were written, clumsily enough, by setting
the numerator apart from the integer to which it belonged, and then the denominator a little
higher up, as we write an exponent. They had nothing analogous to our decimal fractions.

The Romans seem to have got badly mixed. It is true that the idea of ten and its
submultiple, five, runs through their notation, but the idea of position to determine the value
of a symbol never worked its way into their brains. They used letters as numerals, all of
which (except the unit, of course) are multiples of ten or five: thus, I = 1, V = 5, X = 10, L
= 50, C = 100, D = 500, and M = 1000; but the value is not based upon alphabetical order.
Many attempts have been made to account for these symbols, but no completely satisfactory
solution has been reached; at best, we have only plausible guesses. The I to represent 1 is
natural enough, being a single stroke. The V has been supposed to be the half of an X; but
the X comes from where? Echo answers, “Where?” This X has been very aptly called the
crux, the cross, of the Roman notation. We have either read somewhere, or dreamed, that
the V as a numeral was derived from the appearance of the human hand held up, in which
the five fingers point out radially, like a bunch of carrots, the thumb and little finger making
an angle with each other of about 45◦. Now, leave out the three middle fingers, for the sake
of brevity, and the outline left is a perfect V. After that, the X is simply two V’s placed point
to point. The L may be the half of the old square form of C ( ), and C was probably adopted
as being the initial of Centum, a hundred; and M, in like manner, because it is the initial of
Mille, a thousand. The ancient rounded form of M was like this: CI C; and one-half of this
I Clater on became D, or 500.

However all this may be, the Romans contrived, by means of repetitions and combinations
of these numeral letters, to express whatever ideas they had of numbers. To do so, they
not only employed their symbols additatively, but, strangely enough, in the case of I and X,
subtractively also. When either I or X stood at the left of a number larger than itself, it was
to be subtracted, as V = 5, but IV = 4; X = 10, but IX = 9; and XL= 50 − 10 = 40; but,
VI = 6, XI = 11, LX = 60, etc. Another element of confusion was introduced by such forms
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as IIX = 8, XIIX = 18, XXC = 80, etc.
The Roman schoolboy must have had a hard tussle in his arithmetical work with such

an insane notation, and was doubtless glad when the time came to exchange his stylus and
tablet for a sword and shield.

Such was, in outline, numeration among the ancients.

Numeration as it is among Ourselves.

The so-called Arabic, or decimal, system of numeration, which found its way into Europe
six or seven hundred years ago, was certainly a vast improvement on the Hebrew, Greek,
and Roman systems. It had, indeed, so much to recommend it, that it won its way through
nearly the whole civilized world. Besides this, during the past hundred years a strong effort
has been continuously applied, in certain quarters to make it the basis of all measurements,
i.e., to make all our measures and weights, whether of solids, liquids, or gases, start from
one common standard, and to have all the multiples and submultiples of that standard
arranged according to the decimal scale. The French metric system is the realization of
this idea, and receives its name from the chosen unit of length, the metre. This system
has been adopted and made obligatory, in France, Prussia, Italy, Spain, and in some minor
countries; but, although rendered legal in Great Britain in 1864, and in the United States
in 1866, it has never taken root among English-speaking nations. That it has not, shows
conclusively that there is something radically wrong with the decimal system itself. Just
in what that wrongness consists will presently appear. We are not sorry, then, that the
decimo-metric system has failed to establish itself; not, indeed, that we are in love with our
own barbarous standards of weights and measures, which are so bad that human ingenuity
could hardly have invented worse, but because we are convinced that infinitely better can be
done; and that better will consist in throwing over the whole concern, the decimal system
of numbers included, and in putting in place thereof, the duodecimal system. We can then,
with very slight, and surprisingly few changes, bring all our weights and measures of every
kind, with their multiples and subdivisions, into strict correspondence with the base of our
system of notation. The saving in time and labor with a duodecimo-metric system would
be simply incalculable, and men and nations yet unborn would look back and bless us for
having delivered them from the thraldom of the decimal.

The Plea.

Numeration as it Should Be.

The duodecimal system of numeration should be adopted to the exclusion of the decimal and
every other. This is our thesis; and we will now indicate briefly some of the more important
proofs that may be used to sustain it. Of course, we claim no originality, and seek no patent
either for the idea or the proofs; but we would wish to see this matter taken up for concerted
action by enough gallant soldiers, enlisted under the banner of the Duodecimal, to carry him
on to victory, and crown him king in the great land of Arithmos.

An article which appeared in the Educational Review for November, 1891, from the pen of
Professor William B. Smith, of the University of Missouri, treats this matter pretty fully. We
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have taken the liberty of borrowing from it a good deal of what follows, and also of modifying
some minor details of the proposed scheme; but we feel confident that the Professor will not
take this amiss, as we will not take it amiss should some one see fit to modify for the better
what we have written. Be this as it may, the grand central idea, the complete triumph of the
duodecimal system must come; it is on the way:

“Then let us pray that come it may,
As come it will for a’ that,

That youth at school no more shall grieve
O’er ’rithmetic and a’ that.”

The battle is on now between the only great rivals, the decimal and the duodecimal, the
former of which has the great advantage of being in possession; the latter has only its own
intrinsic excellence on which to rely.

The requisites for a good system of numeration are principally the following:
1. It must be thoroughly systematic, down to the very marrow of its bones. This implies

that it must admit of no irregularities, no exceptional cases, no chance of doubt as to meaning
in any case, no confusion; and that it should be so clear that, once started on the track, you
can go on to any number without fear of failing or faltering. This first requisite can be fulfilled
only by making the value of a symbol depend on its position, according to a geometrical
series. On this score any of the systems, from the binal upwards, could claim admittance;
but the Hebrew, Greek, and Roman notations will have to be irrevocably excluded, and we
will have none of them.

2. Whatever the system adopted, the expression for large numbers should be reasonably
concise. This condition throws out immediately all the systems described above from the
unal to the octaval at least, as may be easily seen by reference to the table already given.
The realization of this condition depends upon the value of the base chosen; the larger the
base, the fewer will be the digits required to represent a given number, and the higher the
number to be represented, the more this virtue of the base will assert itself. Thus to represent
ten in the decimal system requires two digits (i.e., 10), to represent a million, seven digits are
necessary (i.e., 1,000,000); but, if our base were one-hundred (centestimal system), ten would
be represented by one digit and a million would be represented by four (i.e., 1000). But we
must not exaggerate here, as the larger the base the greater the number of separate symbols
to be invented, and kept perfectly distinct from each other under every condition of careless
writing, and bad penmanship, and poor mnemonics. This consideration prohibits us from
adopting as a base, though otherwise excellent, such a number as sixty or even twenty-four,
while any base between twelve and twenty-four must be rejected for reasons given below.

In regard to conciseness the decimal system is fairly good, but the duodecimal is measurably
better. Thus, all numbers below 144 (decimal system) are expressed in the duodecimal by
two figures at most; all below 1728, by three figures; all below 20,736, by four ; all below
248,832, by five; and so on.

3. In the third place, the perfection of a system of numeration depends on the facility
which it offers for the handling of its fractions. Two points of view are possible here. We
may consider the merits of a system merely as a system of numbers, as such, or as a system
to be applied to the various needs of business, trades, arts, and manufactures. From either
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point of view the duodecimal system is far in advance of the decimal. Vulgar fractions may,
it is true, be expressed with perfect accuracy in any of the regular systems. Thus 1

111111111111 ,
1

1100 ,
1

110 ,
1
30 ,

1
22 ,

1
20 ,

1
15 ,

1
14 ,

1
13 ,

1
12 ,

1
11 ,

1
10 , are a dozen equally accurate ways of expressing,

each in its own system, the value one-twelfth. But vulgar fractions are time-consuming,
brain-benumbing devices. In order to add together several fractions, you will usually have to
divide, multiply, again divide and multiply, then add, and divide again. To subtract, the same
number of operations are required. To multiply or divide fractions is slightly simpler, only
two multiplications and one division being necessary in each case. To raise to powers and
extract roots requires at least twice as much labor as in whole numbers, and when we have
fractions and whole numbers together, it is worse yet. The well-known lines of an unknown
genius (only one word having been altered) are not inappropriate:

“Multiplication is vexation,
Division is as bad;

The Rule of Three, it puzzles me,
And fractions set me mad.”

Now, when fractions are written as sub-powers of the base of your system, and when they
come out even, all this waste and confusion is avoided; as when we write 0.5 for 1

2 or 0.1875
for 3

16 . Then addition is addition and nothing more, subtraction is only subtraction, and so
of other operations.

But as there is never any great loss without some slight gain, so we suppose there can
be no great gain without some slight loss, and in this connection we come across the snag
of what are called interminate, or circulating, or recurring fractions, i.e., fractions which
cannot be expressed accurately with any finite number of digits. An example of this is the
fraction one-third, which, decimally, becomes 0.3333 . . . . etc. to no end. Now, operations
performed on these recurring fractions as such, can never give us exact results, but only
approximations, and this is a serious defect. And although we can calculate their exact value,
still these endless tail-ends are great nuisances. No system can be entirely free from them,
but the fewer there are of them in any given system, the more perfect is that system. Now of
the first eleven natural divisions of unity (viz. 1

2 ,
1
3 ,

1
4 ,

1
5 ,

1
6 ,

1
7 ,

1
8 ,

1
9 ,

1
10 ,

1
11 ,

1
12) eight become

recurring fractions in the binal, in the quaternal, in the sextal and in the octaval systems;
nine in the ternal and nonal systems; ten in the quinqual, septimal and undecimal systems.
To propose any one of them as a practical system of numeration, would therefore be simply
an insult to humanity.

But two remain, and to show their respective merits, we will give a tabular statement.
The first column of the following table is a list of ordinary vulgar fractions; in the

second column we have the corresponding decimal fractions; in the third the corresponding
duodecimal fractions.

Decimals. Duodecimals.
1
2 = 0.5 = 0.6
1
3 = 0.333‘3’. . . = 0.4
1
4 = 0.25 = 0.3
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Decimals. Duodecimals.
1
5 = 0.2 = 0.‘2497’. . .
1
6 = 0.16‘6’. . . = 0.2
1
7 = 0.‘142857’. . . = 0.‘186t35’. . .
1
8 = 0.125 = 0.16
1
9 = 0.111‘1’. . . = 0.14
1
10 = 0.1 = 0.1‘2497’. . .
1
11 = 0.09‘09’. . . = 0.111‘1’. . .
1
12 = 0.083‘3’. . . = 0.1

In this table, when a fraction is followed by dots, the meaning is that the figure or group
of figures included between inverted commas (‘ ’) is to be repeated to infinity to get the
accurate value. Of these there are six in the decimals, and only four in the duodecimals,
giving a gain of 50 per cent. for these first eleven fractions, and a still greater gain if we
were to continue the list further, in favor of the duodecimal. Nor is this all, for, among the
five decimal fractions which come out without a remainder, only three in the decimals (0.5,
0.2, 0.1) are written with one digit each, while in the duodecimals, five (0.6, 0.4, 0.3, 0.2,
0.1) enjoy that advantage. Again, in the decimals, one of them requires three digits (0.125),
while among the duodecimals none has more than two; all of which, summed up, gives in the
duodecimal system, another saving of time and labor of about 20 per cent. This advantage is
also kept up when we go on to still lower fractions.

Furthermore, the fractions we need oftenest, and use most (1
2 ,

1
3 ,

1
4 ,

1
6 ,

1
8 ,

1
9 ,

1
12) are the

very ones which are not repeaters in the duodecimal system; while of the seven named above,
the decimal system shuts off four (viz., 1

3 ,
1
6 ,

1
9 ,

1
12), and gives us instead, the 1

5 and the 1
10 ,

neither of which is of any practical use.
These advantages all hold good for all multiples of these fractions, as, for 2

8 ,
3
4 ,

5
6 ,

7
8 ,

8
9 ,

11
12

and others, all of which, in the duodecimal system steer clear of the rock of infinite tails.
Another advantage of the duodecimal system is in the higher degree of accuracy obtained

by the use of an equal number of digits, in the case of approximations.
Thus, the greatest error committed by dropping all decimals beyond the second place, is

less than 1
100 , but in duodecimals it is less than 1

144 ; dropping all beyond the third place gives
a maximum error of less than 1

1000 in the one and less than 1
1728 in the other; and dropping

all beyond the fourth place less than 1
10000 and less than 1

20736 . Here, the duodecimal error is
less than half the decimal error. Once more, the maximum error committed by stopping at
the seventh decimal, in say a table of logarithms is less than 1

10000000 , but in duodecimals the
error would be reduced to less than 1

35831808 ; a degree of accuracy nearly four-fold greater.
These, and other advantages which want of space forbids us to dwell on, prove that the

duodecimal is theoretically, at least, superior to the decimal system.
Let us now take a look at the more practical side of the question, which is of course

founded on the theoretical.
It is clear that for an everyday, working system no prime number, as 2, 3, 5, 7, 11, would

be at all suitable as a base, and that precisely on account of its indivisibility, while 4, 6, 8,
and 9 must be rejected for reasons already given; it is also clear that a base greater than 12
would be inconvenient on account of the number of symbols required. The claims, therefore,
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of the decimal and duodecimal systems are the only ones that need be considered.
The practical value of the duodecimal system depends mainly on two things, the first of

which is its slightly greater conciseness, the second the superior divisibility of its base. We
have already sufficiently called attention to the question of conciseness, and will add here
merely that we do not consider it, if taken alone, of very great importance. Indeed, if that
had been the only grounds of a plea for the duodecimal, the present article, would never have
been written. The second, however, is of altogether greater weight.

The number ten can be factored into 2×5, and no further. Consequently the only decimal
fractions that will not be repeaters are those which come from the vulgar fractions 1

2 and 1
5 ,

and from the powers and products of these, as 1
2 = 0.5, 1

5 = 0.2; 1
4 = 0.25, 1

8 = 0.125; 1
16 =

0.0625; 1
25 = 0.04; 1

125 = 0.008; 1
2 ×

1
5 = 1

10 = 0.1; 1
8 ×

1
125 = 0.001, etc. . . .

On the other hand twelve can be factored into three different groups: 2× 6, or 2× 2× 3,
or 3× 4, so that we have 2, 3, 4, and 6 as separate factors. Hence the fractions 1

2 ,
1
3 ,

1
4 ,

1
6 , will

give even duodecimal fractions; they are 0.6, 0.4, 0.3 and 0.2 respectively. All their powers
will be just as obliging, as 1

8 = 0.16, 1
9 = 0.14 ( 1

16) = 0.09 ( 1
27) = 0.054 ( 1

81) = 0.0194 ( 1
64)

= 0.023 ( 1
256) = 0.0069, etc.; and all the products of any of these will go and do likewise,

as 1
2 ×

1
9 = ( 1

18) = 0.08, 1
3 ×

1
4 = ( 1

12) = 0.1, 1
8 ×

1
9 = ( 1

72) = 0.02 ( 1
16 ×

1
27 = 1

482) = 0.004.
The fractions just mentioned, 1

16 ,
1
27 , etc., which are enclosed in parentheses are in decimal

notation.
This divisibility of the base in the duodecimal system is therefore more than twice as

prolific in useful results as that of the decimal system, and gives it a vast advantage over
the latter; an advantage which renders it admirably fitted not only to be the system of
numeration for arithmetical work in general (because, as we have seen, it is relatively free
from repeating fractions), but also fits it to be the foundation of a complete structure of
multiples and subdivisions in the everyday matter of weights and measures of all kinds. Well,
then, let us reform.

The first step towards a reform in any matter, consists in acknowledging our sinfulness.
In the matter of weights and measures our ancestors were terribly sinful, not morally perhaps,
but intellectually, arithmetically, scientifically, and they have transmitted their sins, not to
the third and fourth generations but to the thirty-third and thirty-fourth. To show this we
will take up that one book which of all others we loved most dearly in the days that are long
gone by, our Arithmetic. We turn the fond pages till we come to certain Tables of Weights:

1. Troy Weight.
24 grains (gr.) = 1 pennyweight (dwt.).
20 pennyweights = 1 ounce (oz.).
12 ounces = 1 pound (lb.).

2. Apothecaries’ Weight
20 grains = 1 scruple (3)
3 scruples = 1 drachm (Z)
8 drachms = 1 ounce (Z-)
12 ounces = 1 pound (l-b-)
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2. Avoirdupois Weight
16 drachms = 1 ounce (oz).
16 ounces = 1 pound (lb.).
28 or 25 pounds = 1 quarter (qr.).
4 quarters = 1 hundredweight (cwt.).

20 hundredweights = 1 ton (T.).

The arithmetic then goes on to give some explanations. “Troy Weight,” it says, “is
used in weighing gold, silver, jewels, liquors, etc., and for ingredients used in philosophical
experiments.” How “jewels” and “liquors” got together, what the “etc.” may mean (mayhap
red-herrings’ eyes), what that word “ingredients” may signify, are questions outside the range
of our finite knowledge. “Apothecaries’ weight is used by apothecaries and chemists in mixing
medicines, but drugs are bought and sold by avoirdupois weight.” So! But the book forgets to
tell us how apothecaries and chemists are bought, sold, and mixed. “By avoirdupois weight,
coarse and bulky goods are weighed, and all the common necessaries of life,” such things
presumably as cabbage, chewing-gum, base-balls, cigarettes, tooth-picks, and the like (liquors
and jewels of course excepted).

Here, then, are the three systems of weights in actual use among beings supposed to be
endowed with reason. The first and second agree in two points only, viz., in the number of
ounces (12) in the pound, and in the number of grains (480) in the ounce, but they reach the
latter result by different roads. From these data luckily the number of grains in the pound
turns out, in both cases, to be the same, i.e., 5760.

The third, the avoirdupois, agrees with nothing except itself, and even with that but
poorly. Some one, peace to his mud, has said that boys are liars by constitution. We
don’t believe it, for we remember having been boys ourselves; but when the boy is told
by his infallible school-marm, backed up by the infallible arithmetic, that 28 pounds make
one-quarter of a hundredweight, is he to be blamed if his eye for truth takes on a permanent
cast? The lie will be four times as big when you tell him that one-hundred-and-twelve pounds
make one-hundredweight. Is this the way to instil a spirit of truthfulness into the minds of
the rising generation? True, our American arithmetics have corrected this, but it is taught
yet to millions of youth in other lands.

We are not done with this avoirdupois weight yet, for we would like to know, not from
mere curiosity, but for real practical purposes, how many grains it has to the pound. The
“table” is silent, but a supplementary note will tell us that the number is 7000, so with slate
and pencil, we figure out that the avoirdupois pound is equal to 1 31

144 lbs. troy, while the troy
ounce, to turn the tables again, is equal to 1 17

175 ounce avoirdupois. After that, show us in all
this broad land, the boy or girl, or even the woman or man who can tell us, off-hand, how
many grains there are in an ounce, and how many there are in a drachm, avoirdupois. We
know, because we have just made the calculation; but before you look at the answers, just
shut your eyes, and hold your breath, and see if you are ready to answer; but don’t all speak
at once, please. Even if you should happen to know the former, you will almost surely miss
the latter. The answers are: Four-hundred and thirty-seven and a half (4371

2) grains in the
ounce and twenty-seven and eleven-thirty-seconds (2711

32) grains in the drachm. What a mess!
We turn now to our measures of length. This ought to be a straight-forward business,
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and we look up, if perchance a ray of light may dawn upon us here. A glance at the “table”
soon dispels the illusion, for,

3 barleycorns
 = 1 inch.or 11 lines

or 12 lines
12 inches = 1 foot.
3 feet = 1 yard.

51
2 yards = 1 rod, perch, or pole.

40 rods = 1 furlong.
8 furlongs = 1 mile.
3 miles = 1 league.
60 geographical miles = 1 degree on the equator, or on a meridian.

691
6 statute miles (about) = 1 degree.

Ah, that poor little inch that don’t know whether it is made of barleycorns or lines, or, if
so, of how many. Then the idea of making a mixed number (51

2) of one denomination equal
to the unit of the next is unworthy of the intelligence of a Hottentot or Bushman.

Belonging under the head of Linear Measure, we have another table made expressly, it
seems, for tailors and milliners, which starts out unblushingly with a mixed number, thus:

21
4 inches = 1 nail (kind not stated).
4 nails = 1 quarter.
4 quarters = 1 yard.

This is nice, but read on:

3 quarters = 1 ell Flemish.
5 quarters = 1 ell English.
6 quarters = 1 ell French.

And so the poor tailor or milliner must find out whether his customer is a Fleming, or an
Englishman, or a Frenchman before he can know how much material he must give him for an
ell. How about it if the customer had already been naturalized? What absurd methods and
measures!

When we come to Square Measure, we expect to find the absurdities increase in proportion
to the square, and we will not be disappointed, for we get:

301
4 square yards = 1 square rod.

or 2721
4 square feet = 1 square rod.

To begin with square inches, square feet, square yards, and square rods is natural under
the circumstances and innocent enough, but as soon as that is over we lose our way and
strike off into what has no existence in Linear Measure at all, viz., roods and acres, for:
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40 square rods = 1 rood.
4 roods = 1 acre.

So that 160 square rods = 1 acre.

Therefore the side of a square whose area is one acre must be
√

160 rods, which gives us
12.6491 . . . . rods. The dots indicate that we have not finished the operation; neither do we
intend to do so, for it would take too long. What we have struck here is not merely a case of
a repeating decimal, as 0.333 . . . . which, though endless as a decimal, can nevertheless be
expressed with perfect exactness by the vulgar fraction 1

3 , or by the duodecimal 0.4. No, the
disease here is deeper-seated yet, for the exact square root of 160 cannot be extracted at all.
Of the several ways of showing this, one will be sufficient.

Reducing to prime factors we have (2× 2)(2× 2)(2× 5) = 160. Now, unless all the prime
factors of a number can be grouped by twos, so that each group shall be a perfect square,
then the number itself will not be a perfect square. But, of the three groups above, the first
and second are perfect squares; the third (2× 5 = 10) is not. For the final digit of a perfect
square must be 1, or 4, or 5, or 6, or 9, or one of these followed by an even number of zeros.
Now 10 does not fulfil either of these conditions; therefore, it is not a perfect square, and
therefore 160 is not a perfect square. Hence, no created intelligence will ever be able to give
us in rods, feet, or inches the exact length of the side of a square acre. And yet that acre is
the unit of land measure for those who measure by rods, feet, and inches, and who expect
one day to possess all the land.

In Cubic Measure we look for things solid. Well, the cubic inch, foot, and yard are derived
honestly from the linear inch, foot, and yard, and are neither better nor worse than their
origin; but when we have reached that point the table immediately branches off wildly into:

40 cubic feet of round timber
}

= 1 ton or load.or 50 cubic feet of hewn timber
128 cubic feet = 1 cord of wood.

How would it be if the timber were hewn round, as in masts and spars? But enough. The
Anglo-Saxon tongue, rich as it is in strong terms, fails to supply words to characterize such a
. . . . (no use, it won’t come).

In Liquid Measure things ought to run smoothly, and, at first sight, they do seem a little
better than elsewhere. Thus:

4 fluid ounces = 1 gill.
4 gills = 1 pint.
2 pints = 1 quart.
4 quarts = 1 gallon.

311
2 gallons = 1 barrel.

63 gallons (2 barrels) = 1 hogshead.
2 hogsheads = 1 pipe.
2 pipes = 1 tun.
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The gill, pint, quart, and gallon we can manage to swallow, but the barrel, hogshead,
pipe, and tun are myths and frauds and arithmetical falsehoods.

Moreover, as Liquid Measure is a measure of volume, we naturally want to know what
relation there is between it and Cubic Measure, which is also a measure of volume. Now:

1 gallon = 231 cubic inches = 8.33888 . . . . lbs. distilled water
or 1 gallon = 2771

4 cubic inches = 10. lbs. distilled water
or 1 gallon = 282 cubic inches = 10.171325 . . . . lbs. distilled water
or 1 gallon = various other measures. . . . .

As if this were not bad enough, we have a Dry Measure in which 32 quarts = 1 bushel,
and as 4 quarts = 1 gallon, we infer that 8 gallons would be equal in volume to 1 bushel.
Therefore the bushel should be:

8 × 231 = 1848 cubic inches
or 8 × 2771

4 = 2220 cubic inches
or 8 × 282 = 2256 cubic inches

Yet it is not, for the bushel is defined, by law, as 2150.4 cubic inches; and then, by working
back again, we would find our quarts and pints shaky, and we get bewildered entirely. There
is then no simple relation between our Weights and Measures, although a futile attempt was
made to establish something of the kind by the introduction of that insane fluid ounce.

We have not by any means exhausted the potential confusion of this matter; there are yet
other tables in the arithmetic, and pages of others in the “Dispensatory,” just crammed with
similar incongruities, traps, and pitfalls; so much so that there is probably no sane man living
who could give from memory all the curls and twists of our systems of Weights and Measures.

Knowing how they originated, it is not hard to account for their vagaries. They were
not invented systematically, or built up on any prearranged plan, but just grew up, bit by
bit, according to needs and whims of different tribes. Later on, every once in awhile, some
king would try to disentangle the snarl by enacting laws to regulate the existing standards of
Weights and Measures. Their intentions were honest enough, and they accomplished some
little good, but it was only palliative, not curative. They did not go to the bottom of the evil,
and half-way remedies are usually worthless. The evil here is in the jumble of inconsistencies
in the denominations of the systems, taken either separately or in relation to one another,
and in the absurdity of having more than one system anyhow. These are the arithmetical
sins against good sense which have been handed down to us. Are we going to hand them
down to posterity, or are we going to wipe them off the escutcheon of our race, and hand it
along, clean and untarnished, to our successors?

A desperate attempt to remedy this state of confusion, in the matter of weights and
measures, has indeed been already made by the French, in their metric system, and it becomes
necessary for the better understanding of what follows, to say a word about it here. For
standard of length they took what they supposed to be the ten-millionth part of a quadrant
of a meridian, and called it the “metre.” We have Americanized the word to “meter.” Its
value is 39.37043 . . . inches, about. Then, each denomination ascending is ten times as
great as the preceding one, and a Greek prefix is used to indicate this. Each denomination
descending is one-tenth as large as the preceding, and a Latin prefix does duty here. Thus:
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Ascending. Descending.
10 meters = 1 decameter. 0.1 meter = 1 decimeter.
10 decameters = 1 hectometer. 0.1 decimeter = 1 centimeter.
10 hectometers = 1 kilometer. 0.1 centimeter = 1 millimeter.
10 kilometers = 1 myriameter.

And then their vocabulary seems to have given out.
Square Measure and Cubic Measure are derived directly from the Linear Measure, by the

simple process of squaring and cubing, and no fag-end irregularities are tolerated.
For unit of weight they took a cubic centimeter of water, and called it a “gramme.” We

have shortened it to “gram.” The prefixes for higher and lower denominations are the same
as above, thus :

10 grams = 1 decagram.
10 decagrams = 1 hectogram, etc., etc.

And, 0.1 gram = 1 decigram.
0.1 decigram = 1 centigram, etc., etc.

For Liquid and Dry Measures, the French use their Cubic Measure, but since for ordinary
work, the cubic centimeter is too small, and the cubic meter too large, they adopted as a
convenient unit the cubic decimeter, which is a little more than our quart. This they called
the “litre” (written “liter” by us, and pronounced lee-ter). From this they have decaliter,
hectoliter, kiloliter, deciliter, centiliter, and any others that may be desired.

This system is in itself excellent because it establishes a clear, simple, obvious relation
between weights and measures, so that we can pass from one to the other without labor,
and at the same time be sure of perfectly exact results. This is the reason why it has been
adopted by several countries, and by men engaged in scientific pursuits, the world over. Yet,
although it has been legalized in the United States and in Great Britain and her colonies
generally, more than twenty-five years, English-speaking people will not adopt it. The fact is
that it has one serious, fatal drawback, that of having been founded on the decimal system
of numeration. Had the duodecimal system been brought into use, and a metric system been
founded on it, the result would have been as near perfection as the nature of numbers will
admit of, and such a system, once started, would have gone on, conquering and to conquer,
till not a rag of a decimal would be left floating over any spot on the face of the earth. It is
time now. Come on comrades, fall in, and keep step in the ranks of a new and true intellectual
progress.

Before entering into further details, it becomes necessary to make a digression in order to
settle upon a nomenclature for our duodecimal system.

Clearly, it will not do to use the same word-combinations as in the effete decimal system,
because the meanings would not correspond to the words. Thus, when we write 25 and
pronounce it “twenty-five,” we mean two tens + five, but in the duodecimal system 25 would
mean two twelves + five, and we must have a method of naming which will indicate this
fact. Now, we look upon it as a first principle that the names of a simple number (i.e., the
name of a single digit) should be a simple (not compound) word, and that the name of a
combinational number (formed of two or more digits), should be derived from the names of
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the components. Most, if not all, systems of nomenclature have violated this principle, more
or less.

In English the compound sign 11, which means ten-one (one-ten) is called eleven in which
word there is no very obvious trace of either the word ten or the word one. The same is
true with regard to twelve. We do not mean to say that these words did not mean originally
one-ten, two-ten; we believe they did, but the relationship has been very much obscured.
When we get to thirteen, the relation to three-ten is clear, and from that on to the end of
numbers everything is lovely. The French, not content with these irregularities have allowed
yet others to creep in. Thus they have names which, if translated literally, would read:
sixty-nine (69), sixty-ten (70), sixty-eleven (71), etc., . . . up to sixty-nineteen (79), and then,
four-twenty (80), four-twenty-one (81), etc., . . . up to four-twenty-nineteen (99), and even,
though rarely used, six-twenty for 120.

In the scheme proposed below we intend to sweep away all irregularities of whatever kind,
and to make the whole nomenclature perfectly regular and consistent. The names proposed
may not be final; better ones may perhaps be found, and if any one has better to offer, let
him stand forth and do so; but the things must stand. The table, we think, almost explains
itself, yet, to forestall any possible hard feelings, we put, right here, what few remarks we
have to make.

The figures in parentheses are of the decimal system, all the others are of the duodecimal.
We use the ten digits (0 to 9 included) of the defunct decimal system, with their ancient
names, except in the case of “seven” which is ccntracted to “sen.” As remarked before, we
use provisionally t for ten and l for eleven, which is shortened to “len.” The next number
being a combinational one, we use two symbols (10), and for a name we contract our present
“twelve” to “tel.” Then, to be systematically exact, we hitch on the zero, and hence to 10 =
tel-zero (formerly twelve), but in practice the word zero will be omitted, and this has been
indicated by enclosing it in parentheses.

Having adopted “tel,” we coin a new adjective, “telimal,” and make a vow never to use
that worn-out, unnecessary, cumbersome word, duodecimal, again. Also “telth” will take the
place of twelfth, “senth” of seventh and “lenth” of eleventh. Another thing to be noticed
is that in true combinational names, when the larger number precedes, addition is meant,
as 16 = 10 + 6 = tel-six (the obsolete eighteen); and, on the contrary, when the smaller
number precedes, multiplication is intended, as sixtel = six × tel = 6 × 10 = 60 (the obsolete
seventy-two).

Telimal (Duodecimal) Nomenclature
(0) 0 Zero (49) 41 fortel-one (98) 82 eightel-two
(1) 1 one (50) 42 fortel-two (99) 83 eightel-three
(2) 2 two (51) 43 fortel-three (100) 84 eightel-four
(3) 3 three (52) 44 fortel-four (101) 85 eightel-five
(4) 4 four (53) 45 fortel-five (102) 86 eightel-six
(5) 5 five (54) 46 fortel-six (103) 87 eightel-sen
(6) 6 six (55) 47 fortel-sen (104) 88 eightel-eight
(7) 7 sen (56) 48 fortel-eight (105) 89 eightel-nine
(8) 8 eight (57) 49 fortel-nine (106) 8t eightel-ten
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Telimal (Duodecimal) Nomenclature (cont’d)
(9) 9 nine (58) 4t fortel-ten (107) 8l eightel-len
(10) t ten (59) 4l fortel-len (108) 90 ninetel-(zero)
(11) l len (60) 50 fivetel-(zero) (109) 91 ninetel-one
(12) 10 tel (61) 51 fivetel-one (110) 92 ninetel-two
(13) 11 tel-one (62) 52 fivetel-two (111) 93 ninetel-three
(14) 12 tel-two (63) 53 fivetel-three (112) 94 ninetel-four
(15) 13 tel-three (64) 54 fivetel-four (113) 95 ninetel-five
(16) 14 tel-four (65) 55 fivetel-five (114) 96 ninetel-six
(17) 15 tel-five (66) 56 fivetel-six (115) 97 ninetel-sen
(18) 16 tel-six (67) 57 fivetel-sen (116) 98 ninetel-eight
(19) 17 tel-sen (68) 58 fivetel-eight (117) 99 ninetel-nine
(20) 18 tel-eight (69) 59 fivetel-nine (118) 9t ninetel-ten
(21) 19 tel-nine (70) 5t fivetel-ten (119) 9l ninetel-len
(22) 1t tel-ten (71) 5l fivetel-len (120) t0 tentel-(zero)
(23) 1l tel-len (72) 60 sixtel-(zero) (121) t1 tentel-one
(24) 20 twitel-(zero) (73) 61 sixtel-one (122) t2 tentel-two
(25) 21 twitel-one (74) 62 sixtel-two (123) t3 tentel-three
(26) 22 twitel-two (75) 63 sixtel-three (124) t4 tentel-four
(27) 23 twitel-three (76) 64 sixtel-four (125) t5 tentel-five
(28) 24 twitel-four (77) 65 sixtel-five (126) t6 tentel-six
(29) 25 twitel-five (78) 66 sixtel-six (127) t7 tentel-sen
(30) 26 twitel-six (79) 67 sixtel-sen (128) t8 tentel-eight
(31) 27 twitel-sen (80) 68 sixtel-eight (129) t9 tentel-nine
(32) 28 twitel-eight (81) 69 sixtel-nine (130) tt tentel-ten
(33) 29 twitel-nine (82) 6t sixtel-ten (131) tl tentel-len
(34) 2t twitel-ten (83) 6l sixtel-len (132) l0 lentel-(zero)
(35) 2l twitel-len (84) 70 sentel-(zero) (133) l1 lentel-one
(36) 30 thirtel-(zero) (85) 71 sentel-one (134) l2 lentel-two
(37) 31 thirtel-one (86) 72 sentel-two (135) l3 lentel-three
(38) 32 thirtel-two (87) 73 sentel-three (136) l4 lentel-four
(39) 33 thirtel-three (88) 74 sentel-four (137) l5 lentel-five
(40) 34 thirtel-four (89) 75 sentel-five (138) l6 lentel-six
(41) 35 thirtel-five (90) 76 sentel-six (139) l7 lentel-sen
(42) 36 thirtel-six (91) 77 sentel-sen (140) l8 lentel-eight
(43) 37 thirtel-sen (92) 78 sentel-eight (141) l9 lentel-nine
(44) 38 thirtel-eight (93) 79 sentel-nine (142) lt lentel-ten
(45) 39 thirtel-nine (94) 7t sentel-ten (143) ll lentel-len
(46) 3t thirtel-ten (95) 7l sentel-len
(47) 3l thirtel-len (96) 80 eightel-(zero)
(48) 40 fourtel-(zero) (97) 81 eightel-one

Of course the t’s and the l’s look strange. We are waiting for some artist to invent better
forms.

To pass to numbers of a higher order than are found in the table we need a few new
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names. Prof. Smith suggests, and the suggestion seems an excellent one, to use “po” (power
or position) with the Greek prefixes, di, tri, etc., for coefficients. Hence “dipo” would mean
the second power of tel, i.e., 10 × 10 = 100 (144 formerly). Next use Latin prefixes for
telimal fractions, and you get as follows:

tel = 10. telth = 10−1 = 0.1.
dipo = 102 = 100. semipo = 10−2 = 0.01.
tripo = 103 = 1,000. tertipo = 10−3 = 0.001.
tetrapo = 104 = 10,000. quartipo = 10−4 = 0.0001.
pentapo = 105 = 100,000. quintipo = 10−5 = 0.00001.
hexapo = 106 = 1,000,000. sexipo = 10−6 = 0.000001.
heptapo = 107 = 10,000,000. septipo = 10−7 = 0.0000001.
octapo = 108 = 100,000,000. octipo = 10−8 = 0.00000001.
ennapo = 109 = 1,000,000,000. nonipo = 10−9 = 0.000000001.
dekapo = 10t = 10,000,000,000. decipo = 10−t = 0.0000000001.
endekapo = 10l = 100,000,000,000. undecipo = 10−l = 0.00000000001.
dodekapo = 1010 = 1,000,000,000,000. dodecipo = 10−10 = 0.000000000001.

This will probably be enough, upwards and downwards, for all practical purposes. If,
however, any one should have need to count higher or lower, we would advise him to hire a
clerk, who can be allowed to waste himself away in writing out Greek and Latin prefixes, to
no end.

A word now about the reading of numbers in this system. Several ways will suggest
themselves; we give one which we think short, clear and simple. For example, 3,8t6,2l1,794,052.
Divide it into periods of three figures each, and then read:

Three dodeka, eight-ten-six enna, two-len-one hexa, sen-nine-four tripo, fiftel=two; re-
quiring 22 syllables made up of 64 letters. Now, translating that number into its equivalent
in the decimal system, we have 33,343,759,669,310 which is read: Thirty-three trillions,
three-hundred and forty-three billions, seven-hundred and fifty-nine millions, six-hundred and
sixty-nine thousand, three-hundred and ten; requiring 38 syllables made up of 134 letters. In
this example, taken entirely at random, there is a clear gain of more than 42 per cent. in
the reading and of more than 52 per cent. in the writing, by the use of the telimal system.
In reading, the “po” is omitted whenever its omission will cause no ambiguity. End of the
digression.

We return now to our weights and measures in order to show how they may be brought
under the rule of the Telimal.

The first thing we need is a standard of length, but there is no use whatever in searching
the earth and the skies for a so-called natural unit. Any handy length will do, and fortunately
we have just such a one already, the yard, which is preserved with such infinite care by our
own government as well as by that of Great Britain.

Taking that as a unit, and applying the telimal system, we have forthwith:

10 yards = 1 tel yard = (12 yards old style).
10 tel yards = 1 dipo yard = (144 yards old style).
10 dipo yards = 1 tripo yard = (1728 yards old style).
10 tripo yards = 1 tetrapo yard, etc. to any extent whatever.
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The tripo yard would serve admirably as a unit for long distances, being nearly equal to
our present mile.

1 yard = 10 telth yards = 1 yard.
1 telth yard = 10 semipo yards = 0.1 yard = (3 inches, old style).
1 semipo yard = 10 tertipo yards = 0.01 yard = (1

4 inch, old style).
1 tertipo yard = 10 quartipo yards = 0.001 yard = ( 1

48 inch, old style),

etc., down to molecular and atomic dimensions.
The telth yard is just a handy length for ordinary small measures, while the semipo yard

(1
4 inch) is employed constantly in every workshop in the land.

For square and cubic measures the same unit (the yard) squared or cubed, with its
multiples and subdivisions, will be used.

Of these, the dipo yard square would be something over four of our acres. This should
hardly be thought too large a unit for a country like this; or, at any rate, if you prefer, you
can buy a quarter dipo yard instead of a whole one.

The telth yard cube would give a convenient unit for liquid and dry measure, being equal
to 27 of our cubic inches, or just a little less than our pint. All higher and lower denomination
would of course be telimal multiples and subdivisions of these.

For weights, the standard unit would be the weight of the unit of volume (the telth yard
cube) of distilled water, at its maximum density; this would very nearly correspond to our
present pound. Multiples and subdivisions as usual.

For a “set of weights” to be used with a balance, the 1, 2, 3, 6, would probably be the
most convenient; for, taken either separately or by addition, they would serve for weighing
anything from one up to the unit of the next higher rank inclusively. Thus,

With weight 1 we can weigh one = 1.
With weight 2 we can weigh two = 2.
With weight 3 we can weigh three = 3.
With weights 1 + 3 we can weigh four = 4.
With weights 2 + 3 we can weigh five = 5.
With weight 6 we can weigh six = 6.
With weights 1 + 6 we can weigh sen = 7.
With weights 2 + 6 we can weigh eight = 8.
With weights 3 + 6 we can weigh nine = 9.
With weights 1 + 3 + 6 we can weigh ten = t.
With weights 2 + 3 + 6 we can weigh len = l.
With weights 1 + 2 + 3 + 6 we can weigh tel = 10 (the unit of the rank above).

For larger numbers take 10, 20, 30, 60, and the same advantages of the greatest return
from the least outlay, remains.

An important factor in the running of the machinery of this world is money. We are all
naturally somewhat interested in the question of mono-metallism, bi-metallism, silver bills
and the like, but these phases of the money question do not enter here. We are concerned
just now with the arithmetic of money. All things considered, we think our telth pound of
coin silver (len-telths fine), which is very near our present dollar, would be the best unit.
Then divide and multiply that to your heart’s content, but always telimally.
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The coins or bills to be issued should be according to the scheme given above for weights,
viz., the 1’s, 2’s, 3’s, 6’s of each rank. This would greatly facilitate the counting and reduce
the handling of money; besides, silver coins could then be used for weights on a small scale.

The French, in their metric system, tried to get a grip on circular and time measure, but
failed completely. We hope to be more successful.

In circular measure we have now,

Sixty seconds = one minute.
Sixty minutes = one degree.
Sixty degrees = one sextant.
Six sextants = one circle.

This is probably a remnant of an attempted sexagesimal system. In time measure we
have:

Sixty seconds = one minute.
Sixty minutes = one hour, and then we go wild again, for,
Twenty-four hours = one day.

Now, a day is measured by one turn in a circle of a point on the earth, and an every-day
problem is to convert time into longitude; and yet the words which correspond to minute and
second, do not mean the same things; for a minute of time equals fifteen minutes of longitude.
Comment is unnecessary.

In our new system circular and time measures are the same. After mature consideration
we have come to the conclusion that it will perhaps be better to take the semi-circumference
as a unit instead of the entire circle. This granted, divide and subdivide that unit according
to the telimal system, and you have:

Tel fourths (iv) = 1′′′ ( = about 1
6 second, old style).

Tel thirds = 1′′ (= about 2 seconds, old style).
Tel seconds = 1′ ( = 25 seconds, old style).
Tel primes = 1◦

{grade (of time) (= 5 minutes, old style).
degree (of cycle) (= 11

4
◦, old style).

Tel
{grades
degrees

}
= 1 hour (= 1 hour = 15◦, old style).

Tel hours =
{1 day = 1 night (of time) (= 12 hours, old style).
1 hemicycle (of circle) (= 180◦, old style).

If it were preferred to use the whole circumference as a unit, then each of the above values
would be doubled. This would make the hour very long.

Holding close relationship with the foregoing is the division of the year. The day (as used
now) is a natural division of time which man can neither lengthen nor shorten; the week of
sen (old seven) days has been settled by higher legislation than ours, and it behooves us to
leave it alone. The year is another natural unit of time, and its division into tel months falls
in with our telimal system. The only regulating that should be attempted in this matter is to
make the months of equal length by giving to each thirty days. There will then remain five
days over in common years and six in leap-years. Let these be made legal holidays, belonging
to no month, and bearing no interest, and let them be spaced at even distances throughout
the year, as follows. We leave the numbers in decimal notation:
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1 day New Year’s Day
January, 30 days.
February, 30 days.

1 day Leap-Year Day every fourth year.
March, 30 days.
April, 30 days.

1 day Spring (Vernal?) Day.
May, 30 days.
June, 30 days.

1 day Independence Day (put the “Glorious old Fourth” here).
July, 30 days.
August, 30 days.

1 day Autumn Day
September, 30 days.
October, 30 days.

1 day Election Day every fourth year, but celebrate it every year.
November, 30 days.
December, 30 days.
This suggestion about the year is considered only as an ornament, and whether it be

adopted or not, the telimal system will not suffer any loss.
In looking back over our “tables,” we are struck with a curious fact, which seems to

indicate that there always existed a natural longing for that number twelve.
The old multiplication tables always went to twelve times twelve. Then we have:

Twelve pence = 1 shilling.
Twelve lines = 1 inch.
Twelve inches = 1 foot.
Twelve ounces = 1 pound (in two systems).
Twelve units = 1 dozen.
Twelve dozen = 1 gross.
Twelve gross = 1 great-gross.
Twelve hours = 1 day (often used thus).
Twelve signs = 1 zodiac.
Twelve months = 1 year.

Is it not by the dozen that you buy shirts, collars, cuffs, socks, eggs, cups and saucers,
knives and forks, spoons, hardware, chemical-ware, handkerchiefs, buttons, candles, and
dozens and dozens of the smaller articles of every-day use? No other number occurs anything
like so often in the tables, except that most useful factor of twelve, viz., four; but ten and five
are conspicuously absent. This shows that common sense, in spite of the heathen decimal,
still succeeded, to some extent, in making itself heard. Who ever wanted to buy 1

5 of a pound
of tea, or 1

10 of a gallon of molasses? The five and the ten, i.e., the decimal system, is doomed,
and the sooner it is knocked down and carried out the better.

To sum up, the telimal system has, among others, the following advantages over the
decimal:

It is more concise; it has fewer repeating fractions and, therefore, less need of the crazy
vulgar fractions; it is very much more exact in the matter of approximations; the divisibility
of its base stamps it as the natural system of numeration; arithmetical operations in it are
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easier, especially multiplication; it has no perplexing tables to be learned and forgotten, or
left, as is so often the case. unlearned altogether; it requires no multiplications or divisions
to reduce from one denomination to another; it is just as easy, in it, to handle compound
numbers of any kind as to work with abstract numbers; much of what to us is now hard and
tedious work will be done with ease, even mentally, in the telimal system.

To the astronomer, the surveyor, the physicist, the chemist; the mechanical, the civil, the
electrical engineer, the architect; to every one who uses an instrument of precision; to the
machinist, the carpenter, to the business man, the teacher, the scholar; to every one who
deals largely in figures, it would save more than one year in every tel years if the change were
made.

And, after all, the change is not so very great. Two new symbols, three or four new
names, a few Greek and Latin prefixes, and all is ready. A grown man would understand it
at sight, be able to use it in a week or two, be perfect in it in a couple of months, think in it
at the end of a year, and would bless God for the rest of his days for having fallen in with so
superior a method of managing numbers. The school-boy would grow fat on it, and know
more arithmetic at tel years of age than his father did at twitel.

The only real difficulty in the way is the unlearning of the decimal system; and “the beast
with ten horns” would make a hard fight, but that applies only to the unfortunates of this
generation. “Whatever man has done man may do.” Six or seven centuries back all western
Europe abandoned its old systems of numeration and adopted the decimal. That system
has been weighed in the balance and found wanting. Where should be the insurmountable
difficulty in throwing it over now and in putting in its place the most perfect system which
the nature of numbers will admit of, and which will never need replacing so long as the world
endures—nor afterwards?

A century back France woke up and brushed away all her foolish old systems of measures
and weights, introduced her metric system, and induced several other countries to do the
like. In a short time everybody was talking “kilogrammes,” “centimetres,” “hectolitres,” etc.,
or words to that effect, and yet no bones were broken over the matter, the literature of the
country was not overthrown, nor was the science of mathematics destroyed. Yet the change
proposed here is no more violent than was then brought about.

About the same time the United States gave up £, s., d., and introduced $, dimes, cents,
without creating a revolution or stirring up any bad blood. The change proposed now is dipo,
tripo, tetrapo times more useful, and the cost bears no proportion to the gain.

“Let us then be up and doing;”
Rouse ye now, ye valiant men,

The light of science still pursuing,
Thunder o’er the ranks of ten.

Onward to the conflict press ye,
Bearing high the flag of tel;

And may coming ages bless ye,
Proclaiming that ye have done well.
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